
Package: rcaiman (via r-universe)
September 9, 2024

Type Package

Title CAnopy IMage ANalysis

Version 1.2.3.9000

Date 2024-09-04

Description Tools for pre-processing and processing canopy photographs
with support for raw data reading. Works with images taken with
both regular and fisheye lenses (all types). Includes
algorithms specifically designed to mitigate errors caused by
direct sunlight.

License GPL-3

BugReports https://github.com/GastonMauroDiaz/rcaiman/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends filenamer, magrittr, colorspace, terra

Imports methods, testthat, pracma, stats, utils, Rdpack, spatial,
lidR, tcltk

Suggests autothresholdr, conicfit, EBImage, bbmle, imager, reticulate

RdMacros Rdpack

Roxygen list(markdown = TRUE)

Repository https://gastonmaurodiaz.r-universe.dev

RemoteUrl https://github.com/gastonmaurodiaz/rcaiman

RemoteRef HEAD

RemoteSha ba4c791aed249a4dcc713590c5ae8fe934254fbf

Contents
apply_thr . 3
azimuth_image . 4

1

https://github.com/GastonMauroDiaz/rcaiman/issues

2 Contents

calc_co . 5
calc_diameter . 6
calc_relative_radius . 7
calc_zenith_colrow . 8
calibrate_lens . 9
chessboard . 12
cie_sky_model_raster . 13
colorfulness . 14
correct_vignetting . 15
crop_caim . 16
crosscalibrate_lens . 16
defuzzify . 18
enhance_caim . 19
expand_noncircular . 21
extract_dn . 23
extract_feature . 24
extract_radiometry . 25
extract_rl . 30
extract_sky_points . 32
extract_sun_coord . 34
find_sky_pixels . 35
fisheye_to_equidistant . 36
fisheye_to_pano . 38
fit_cie_sky_model . 39
fit_coneshaped_model . 42
fit_trend_surface . 44
fix_reconstructed_sky . 45
gbc . 47
interpolate_sky_points . 48
lens . 49
local_fuzzy_thresholding . 51
masking . 53
mask_hs . 54
mask_sunlit_canopy . 55
membership_to_color . 56
normalize . 57
obia . 58
ootb_mblt . 59
ootb_obia . 61
ootb_sky_reconstruction . 63
optim_normalize . 66
percentage_of_clipped_highlights . 67
polar_qtree . 68
qtree . 69
read_bin . 71
read_caim . 71
read_caim_raw . 73
read_manual_input . 75

apply_thr 3

read_opt_sky_coef . 76
regional_thresholding . 77
rings_segmentation . 78
row_col_from_zenith_azimuth . 79
sectors_segmentation . 80
sky_grid_segmentation . 81
test_lens_coef . 82
thr_isodata . 83
thr_mblt . 84
write_bin . 87
write_caim . 88
write_sky_points . 89
write_sun_coord . 90
zenith_azimuth_from_row_col . 91
zenith_image . 92

Index 93

apply_thr Apply threshold

Description

Global or local thresholding of images.

Usage

apply_thr(r, thr)

Arguments

r SpatRaster. A greyscale image.

thr Numeric vector of length one or a single-layer raster from the class SpatRaster.
Threshold.

Details

It is a wrapper function around the operator > from the terra package. If a single threshold value
is provided as the thr argument, it is applied to every pixel of the object r. If instead a SpatRaster
is provided, a particular threshold is applied to each particular pixel.

Value

An object of class SpatRaster with values 0 and 1.

See Also

Other Binarization Functions: obia(), ootb_mblt(), ootb_obia(), regional_thresholding(),
thr_isodata(), thr_mblt()

4 azimuth_image

Examples

r <- read_caim()
bin <- apply_thr(r$Blue, thr_isodata(r$Blue[]))
plot(bin)
Not run:
This function is useful in combination with the ‘autothresholdr’
package. For example:
require(autothresholdr)
thr <- auto_thresh(r$Blue[], "IsoData")[1]
bin <- apply_thr(r$Blue, thr)
plot(bin)

End(Not run)

azimuth_image Build azimuth image

Description

Build a single-layer image with azimuth angles as pixel values, assuming upwards-looking hemi-
spherical photography with the optical axis vertically aligned.

Usage

azimuth_image(z, orientation = 0)

Arguments

z SpatRaster built with zenith_image().
orientation Azimuth angle (degrees) at which the top of the image was pointing at the mo-

ment of taking the picture. This design decision was made because the usual
field protocol is recording the angle at which the top of the camera points.

Value

An object of class SpatRaster with azimuth angles in degrees. If the orientation argument is zero,
North (0º) is pointing up as in maps, but East (90º) and West (270º) are flipped regarding to maps.
To understand why, take two flash-card size pieces of paper; put one on a table in front of you and
draw on it a compass rose; take the other and hold it with your arms extended over your head and,
following the directions of the compass rose in front of you, draw another one in the paper side that
is facing down—it will be an awkward position, like if you were taking an upward-looking photo
with a mobile device while looking at the screen—; finally, put it down and compare both compass
roses.

See Also

Other Lens Functions: calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

calc_co 5

Examples

z <- zenith_image(600, lens("Nikon_FCE9"))
a <- azimuth_image(z)
plot(a)
Not run:
a <- azimuth_image(z, 45)
plot(a)

End(Not run)

calc_co Calculate canopy openness

Description

Calculate canopy openness

Usage

calc_co(bin, z, a, m = NULL, angle_width = 10)

Arguments

bin SpatRaster. Binarized hemispherical canopy image.

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

m SpatRaster. A mask. For hemispherical photographs, check mask_hs().

angle_width Numeric vector of length one. It should be 30, 15, 10, 7.5, 6, 5, 3.75, 3, 2.5, 1.875, 1
or 0.5 degrees. This constrain is rooted in the requirement of a value able to di-
vide both the 0 to 360 and 0 to 90 ranges into a whole number of segments.

Details

Canopy openness calculated as in the equation from Gonsamo et al. (2011):

CO =
∑N

i=1 GF (ϕi, θi) · [(cos(θ1)− cos(θ2))/n],

where GF (ϕi, θi) is the gap fraction of the cell i, θ1 and θ2 are the minimum and maximum zenith
angle of the cell i, n is the number of cells on the ring delimited by θ1 and θ2, and N is the total
number of cells.

When a mask is provided through the m argument, the equation is modified as follow:
CO=

∑N
i=1 GF (ϕi,θi)·[(cos(θ1)−cos(θ2))/n]∑N

i=1(cos(θ1)−cos(θ2))/n
.

This allows the masking of any individual cell.

Value

Numeric vector of length one.

6 calc_diameter

References

Gonsamo A, Walter JN, Pellikka P (2011). “CIMES: A package of programs for determining
canopy geometry and solar radiation regimes through hemispherical photographs.” Computers and
Electronics in Agriculture, 79(2), 207–215. doi:10.1016/j.compag.2011.10.001.

Examples

caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- mask_hs(z, 0, 70)
bin <- apply_thr(caim$Blue, thr_isodata(caim$Blue[m]))
plot(bin)
calc_co(bin, z, a, m, 10)

calc_diameter Calculate diameter

Description

Calculate the diameter in pixels of a 180º fisheye image.

Usage

calc_diameter(lens_coef, radius, angle)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

radius Numeric vector. Distance in pixels from the zenith.

angle Numeric vector. Zenith angle in degrees.

Details

This function helps handle devices with a field of view different than 180º. Given a lens projection
function and data points consisting of radii (pixels) and their correspondent zenith angle (θ), it
returns the horizon radius (i.e., the radius for θ equal to 90º).

When working with non-circular hemispherical photography, this function will help to find the
diameter that a circular image would have if the equipment would record the whole hemisphere.

The required data (radius-angle data pairs) can be obtained following the instructions given in the
user manual of Hemisfer software. The following is a slightly simpler alternative:

• Find a vertical wall and a leveled floor, both well-constructed.

• Draw a triangle of 5× 4× 3 meters on the floor, with the 4-meter side over the wall.

https://doi.org/10.1016/j.compag.2011.10.001
https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm

calc_relative_radius 7

• Locate the camera over the vertex that is 3 meters away from the wall. Place it at a given
height above the floor, 1.3 meters for instance.

• Make a mark on the wall at the chosen height over the wall-vertex nearest to the camera-vertex.
Make four more marks with one meter of spacing and following a horizontal line. This will
create marks for 0º, 18º, 34º, 45º, and 54º θ.

• Before taking the photograph, do not forget to align the zenith coordinates with the 0º θ mark
and check if the optical axis is leveled.

The line selection tool of ImageJ can be used to measure the distance in pixels between points on
the image. Draw a line, and use the dropdown menu Analyze>Measure to obtain its length.

For obtaining the projection of a new lens, refer to calibrate_lens().

Value

Numeric vector of length one. Diameter adjusted to a whole number (see zenith_image() for
details about that constrain).

See Also

Other Lens Functions: azimuth_image(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

Examples

Nikon D50 and Fisheye Nikkor 10.5mm lens
calc_diameter(lens("Nikkor_10.5mm"), 1202, 54)

calc_relative_radius Calculate relative radius

Description

Calculate the relative radius given a zenith angle and lens function. This is known as the projection
function.

Usage

calc_relative_radius(angle, lens_coef)

Arguments

angle Numeric vector. Zenith angles in degrees.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

https://imagej.net/ij/docs/guide/146-19.html#toc-Subsection-19.2
https://imagej.net/ij/

8 calc_zenith_colrow

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_colrow(), calibrate_lens(),
crosscalibrate_lens(), expand_noncircular(), extract_radiometry(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

calc_zenith_colrow Calculate zenith raster coordinates

Description

Calculate zenith raster coordinates from points digitized with the open-source software package
‘ImageJ’. The zenith is the point on the image that represents the zenith when upward-looking
photographs are taken with the optical axis vertically aligned.

Usage

calc_zenith_colrow(path_to_csv)

Arguments

path_to_csv Character vector. Path to a CSV file created with the point selection tool of
‘ImageJ’ software.

Details

The technique described under the headline ‘Optical center characterization’ of the user manual of
the software Can-Eye can be used to acquire the data for determining the zenith coordinates. This
technique was used by Pekin and Macfarlane (2009), among others. Briefly, it consists in drilling
a small hole in the cap of the fisheye lens (it must be away from the center of the cap), and taking
about ten photographs without removing the cap. The cap must be rotated about 30º before taking
each photograph.(NOTE: The method implemented here does not support multiple holes).

The point selection tool of ‘ImageJ’ software should be used to manually digitize the white dots and
create a CSV file to feed this function. After digitizing the points on the image, use the dropdown
menu Analyze>Measure to open the Results window. To obtain the CSV file, use File>Save As...

Another method–only valid when enough of the circle perimeter is depicted in the image– is taking a
very bright picture (for example, a picture of the corner of a room with walls painted in light colors)
with the lens completely free (do not use any mount). Then, digitize points over the circle perimeter.
This was the method used for producing the example file (see Examples). It is worth noting that
the perimeter of the circle depicted in a circular hemispherical photograph is not necessarily the
horizon.

Value

Numeric vector of length two. Raster coordinates of the zenith, assuming a lens facing up with its
optical axis parallel to the vertical line. It is important to note the difference between the raster
coordinates and the Cartesian coordinates. In the latter, the vertical axis value decreases downward,
but the opposite is true for the raster coordinates, which works like a spreadsheet.

https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://can-eye.paca.hub.inrae.fr/documentation/documentation
https://can-eye.paca.hub.inrae.fr/documentation/documentation
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

calibrate_lens 9

References

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digital cover
photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320. doi:10.3390/
rs1041298.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calibrate_lens(),
crosscalibrate_lens(), expand_noncircular(), extract_radiometry(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

Examples

Not run:
path <- system.file("external/points_over_perimeter.csv",

package = "rcaiman")
calc_zenith_colrow(path)

End(Not run)

calibrate_lens Calibrate lens

Description

Calibrate a fisheye lens

Usage

calibrate_lens(path_to_csv, degree = 3)

Arguments

path_to_csv Character vector. Path to a CSV file created with the point selection tool of
‘ImageJ’ software.

degree Numeric vector of length one. Polynomial model degree.

Details

Fisheye lenses have a wide field of view and the same distortion in all directions running orthog-
onally to the optical axis. The latter property allows fitting a precise mathematical relationship
between distances to the zenith on the image space and zenith angles on the hemispherical space
(assuming upward-looking hemispherical photography with the optical axis vertically aligned).

The method outlined here, known as the simple method, is explained in details in Díaz et al. (2024).
Next explanation might serve mostly as a handbook.

Step-by-step guide for producing a CSV file to feed this function:

https://doi.org/10.3390/rs1041298
https://doi.org/10.3390/rs1041298
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

10 calibrate_lens

Materials:
• this package and ImageJ
• camera and lens
• tripod
• standard yoga mat
• table at least as wide as the yoga mat width
• twenty two push pins of different colors
• one print of this sheet (A1 size, almost like a research poster).
• scissors
• some patience

Instructions:
Cut the sheet by the dashed line. Place the yoga mat extended on top of the table. Place the
sheet on top of the yoga mat. Align the dashed line with the yoga mat border closest to you.
Place push pins on each cross. If you are gentle, the yoga mat will allow you to do that without
damaging the table. Of course, other materials could be used to obtain the same result, such as
cardboard, foam, nails, etc.

Place the camera on the tripod. Align its optical axis with the table while looking for getting
an image showing the overlapping of the three pairs of push pins, as instructed in the print. In
order to take care of the line of pins at 90º relative to the optical axis, it may be of help to use
the naked eye to align the entrance pupil of the lens with the pins. The alignment of the push
pins only guarantees the position of the lens entrance pupil, the leveling should be cheeked with
an instrument, and the alignment between the optical axis and the radius of the zenith push pin
should be taken into account. In practice, the latter is achieved by aligning the camera body
with the orthogonal frame made by the quarter circle.
Take a photo and transfer it to the computer, open it with ImageJ, and use the point selection
tool to digitize the push pins, starting from the zenith push pin and not skipping any shown push
pin. End with an additional point where the image meets the surrounding black (or the last pixel
in case there is not blackness because it is not a circular hemispherical image. There is no need

https://imagej.net/ij/download.html
https://osf.io/tudzc
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

calibrate_lens 11

to follow the line formed by the push pins). Then, use the dropdown menu Analyze>Measure
to open the window Results. To obtain the CSV, use File>Save As...

Use test_lens_coef() to test if coefficients are OK.

Value

An object of class list with named elements. ds is the dataset used to fit the model, model is
the fitted model (class lm, see stats::lm()), horizon_radius is the radius at 90º, lens_coef is a
numeric vector of length equal to the degree argument containing the polynomial model coeffi-
cients for predicting relative radius (coefficients(model)/horizon_radius), zenith_colrow are
the raster coordinates of the zenith push pin, max_theta is the maximum zenith angle in degrees,
and max_theta_px is the distance in pixels between the zenith and the maximum zenith angle in
pixels units.

Note

If we imagine the fisheye image as an analog clock, it is possible to calibrate 3 o’clock by attaching
the camera to the tripod in landscape mode while leaving the quarter-circle at the lens’s right side.
To calibrate 9 o’clock, it will be necessary to rotate the camera to put the quarter-circle at the
lens’s left side. To calibrate 12 and 6 o’clock, it will be necessary to do the same but with the
camera in portrait mode. If several directions are sampled with this procedure, a character vector
of length greater than one in which each element is a path to a CSV files could be provided as the
path_to_csv argument.

References

Díaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
crosscalibrate_lens(), expand_noncircular(), extract_radiometry(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

https://doi.org/10.1016/j.agrformet.2024.110020

12 chessboard

Examples

path <- system.file("external/Results_calibration.csv", package = "rcaiman")
calibration <- calibrate_lens(path)
coefficients(calibration$model)
calibration$lens_coef %>% signif(3)
calibration$horizon_radius

Not run:
test_lens_coef(calibration$lens_coef) #MacOS and Windows tend to differ here
test_lens_coef(c(0.628, 0.0399, -0.0217))

End(Not run)

.fp <- function(theta, lens_coef) {
x <- lens_coef[1:5]
x[is.na(x)] <- 0
for (i in 1:5) assign(letters[i], x[i])
a * theta + b * theta^2 + c * theta^3 + d * theta^4 + e * theta^5

}

plot(calibration$ds)
theta <- seq(0, pi/2, pi/180)
lines(theta, .fp(theta, coefficients(calibration$model)))

chessboard Do chessboard segmentation

Description

Do chessboard segmentation

Usage

chessboard(r, size)

Arguments

r SpatRaster.

size Numeric vector of length one. Size of the square segments.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: mask_hs(), mask_sunlit_canopy(), polar_qtree(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

cie_sky_model_raster 13

Examples

caim <- read_caim()
seg <- chessboard(caim, 20)
plot(caim$Blue)
plot(extract_feature(caim$Blue, seg))

cie_sky_model_raster CIE sky model raster

Description

CIE sky model raster

Usage

cie_sky_model_raster(z, a, sun_coord, sky_coef)

Arguments

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

sun_coord Numeric vector of length two. The solar disk center represented with zenith and
azimuth angles in degrees.

sky_coef Numeric vector of length five. Parameters of the sky model.

See Also

Other Sky Reconstruction Functions: fit_cie_sky_model(), fit_coneshaped_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

z <- zenith_image(50, lens())
a <- azimuth_image(z)
path <- system.file("external", package = "rcaiman")
skies <- read.csv(file.path(path, "15_CIE_standard_skies.csv"))
parameters are from http://dx.doi.org/10.1016/j.energy.2016.02.054
sky_coef <- skies[4,1:5]
sun_coord <- c(45, 0)
plot(cie_sky_model_raster(z, a, sun_coord, sky_coef))

14 colorfulness

colorfulness Quantify colorfulness

Description

Quantify the colorfulness of an image

Usage

colorfulness(caim, m = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

m SpatRaster. A mask. For hemispherical photographs, check mask_hs(). Default
(NULL) is the equivalent to enter !is.na(caim$Red).

Details

Quantify the colorfulness of an sRGB image using a bidimensional space formed by the green/red
and the blue/yellow axes of the CIE LAB space, symbolized with A and B, respectively. The color-
fulness index (CI) is defined as

CI =
Ao

Ap
· 100,

where Ao and Ap are the observed and potential area of the AB plane. Ao refers to the colors from
the image while Ap to the colors from the whole sRGB cube.

Value

A numeric vector of length one.

Note

An early version of this function was used in Martin et al. (2020).

References

Martin DA, Wurz A, Osen K, Grass I, Hölscher D, Rabemanantsoa T, Tscharntke T, Kreft H
(2020). “Shade-Tree Rehabilitation in Vanilla Agroforests is Yield Neutral and May Translate into
Landscape-Scale Canopy Cover Gains.” Ecosystems, 24(5), 1253–1267. doi:10.1007/s10021020-
005865.

See Also

Other Tool Functions: correct_vignetting(), defuzzify(), extract_dn(), extract_feature(),
extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

https://doi.org/10.1007/s10021-020-00586-5
https://doi.org/10.1007/s10021-020-00586-5

correct_vignetting 15

Examples

caim <- read_caim() %>% normalize()
colorfulness(caim)

correct_vignetting Correct vignetting effect

Description

Correct vignetting effect

Usage

correct_vignetting(r, z, lens_coef_v)

Arguments

r SpatRaster. A fish-eye image.

z SpatRaster built with zenith_image().

lens_coef_v Numeric vector. Coefficients of a vignetting function (fv) of the type fv =
1 + a · θ + b · θ2 + ... + m · θn, where θ is the zenith angle, a, b, c and m
are the coefficients. The maximum polynomial degree supported is sixth. See
extract_radiometry() for additional details.

Value

The argument r but with corrected values.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(), optim_normalize(),
percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(), write_bin(),
write_caim()

Examples

path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
r <- gbc(caim$Blue)
r
r <- correct_vignetting(r, z, c(0.0638, -0.101))
r

16 crosscalibrate_lens

crop_caim Crop a canopy image from a file

Description

Function that complements read_caim() and read_caim_raw()

Usage

crop_caim(r, upper_left = NULL, width = NULL, height = NULL)

Arguments

r SpatRaster

upper_left An integer vector of length two. The pixels coordinates of the upper left corner
of a region of interest (ROI). These coordinates should be in the raster coor-
dinates system. This system works like a spreadsheet, i.e, when going down
through the vertical axis, the row number increases (IMPORTANT: column
and row must be provided instead of row and column, as is the norm for objects
from the class data.frame and others alike)

width, height An integer vector of length one. The size of the boxy ROI whose upper left
corner is the upper_left argument.

Value

SpatRaster

Examples

caim <- read_caim()
ncell(caim)
caim <- crop_caim(caim, c(231,334), 15, 10)
ncell(caim)

crosscalibrate_lens Cross-calibrate lens

Description

Cross-calibrate lens

crosscalibrate_lens 17

Usage

crosscalibrate_lens(
path_to_csv_uncal,
path_to_csv_cal,
zenith_colrow_uncal,
zenith_colrow_cal,
diameter_cal,
lens_coef,
degree = 3

)

Arguments

path_to_csv_uncal, path_to_csv_cal
Character vector of length one. Path to a CSV file created with the point se-
lection tool of ‘ImageJ’ software (cal and uncal stand for calibrated and uncali-
brated, respectively).

zenith_colrow_uncal, zenith_colrow_cal
Numeric vector of length two. Raster coordinates of the zenith. See calc_zenith_colrow()
(cal and uncal stand for calibrated and uncalibrated, respectively).

diameter_cal Numeric vector of length one. Diameter in pixels of the image taken with the
calibrated camera.

lens_coef numeric
degree Numeric vector of length one. Polynomial model degree.

Details

Read the help page of calibrate_lens() for understanding the theory being this function.

This function is intended to be used when a camera calibrated with a method of higher accuracy
than the one proposed in calibrate_lens() is available or there is a main camera to which all
other devices should be adjusted.

It requires two photographs taken from the exact same location with the calibrated and uncalibrated
camera. This means that the lens entrance pupils should match and the optical axes should be
aligned.

Points should be digitized in tandem with ImageJ and saved as CSV files.

Value

An object of class list with named elements. ds is the dataset used to fit the model, model is the
fitted model (class lm, see stats::lm()), horizon_radius is the radius at 90º, lens_coef is a numeric
vector of length equal to the degree argument containing the polynomial model coefficients for
predicting relative radius (coefficients(model)/horizon_radius).

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), expand_noncircular(), extract_radiometry(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

18 defuzzify

defuzzify Defuzzify a fuzzy classification

Description

This function translates degree of membership into Boolean logic using a regional approach. The
result will ensure that the fuzzy and Boolean version will agree at the chosen level of aggrega-
tion (controlled by the argument segmentation). This method makes perfect sense to translate a
subpixel classification of gap fraction (or a linear ratio) into a binary product.

Usage

defuzzify(mem, segmentation)

Arguments

mem An object of the class SpatRaster. Degree of membership.

segmentation An object of the class SpatRaster such as the result of a call to sky_grid_segmentation().

Value

An object of the class SpatRaster containing binary information.

Note

This method is also available in the HSP software package (Lang et al. 2013).

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical image
from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13–27. doi:10.2478/fsmu20130008.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), extract_dn(), extract_feature(),
extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)

https://doi.org/10.2478/fsmu-2013-0008

enhance_caim 19

r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()
bin <- find_sky_pixels(r, z, a)
bin <- ootb_mblt(r, z, a, bin)
plot(bin$bin)
ratio <- r / bin$sky_s
ratio <- normalize(ratio, 0, 1, TRUE)
plot(ratio)
g <- sky_grid_segmentation(z, a, 10)
bin2 <- defuzzify(ratio, g)
plot(bin2)
plot(abs(bin$bin - bin2))

End(Not run)

enhance_caim Enhance canopy image

Description

This function was first proposed in Díaz and Lencinas (2015). It uses the color perceptual attributes
(hue, lightness, and chroma) to enhance the contrast between the sky and plants through fuzzy
classification. It applies the next classification rules (here expressed in natural language): clear sky
is blue and clouds decrease its chroma; if clouds are highly dense, then the sky is achromatic, and,
in such cases, it can be light or dark; everything that does not match this description is not sky.
These linguistic rules were translated to math language by means of fuzzy logic. This translation
was thoughtfully explained in the aforementioned article.

Usage

enhance_caim(
caim,
m = NULL,
sky_blue = NULL,
sigma = NULL,
w_red = 0,
thr = NULL,
fuzziness = NULL,
gamma = NULL

)

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().
m SpatRaster. A mask. For hemispherical photographs, check mask_hs(). Default

(NULL) is the equivalent to enter !is.na(caim$Red).
sky_blue color. Is the target_color argument to be passed to membership_to_color().

Default (NULL) is the equivalent to enter sRGB(0.1, 0.4, 0.8)–the HEX color
code is #1A66CC, it can be entered into a search engine (such as Mozilla Fire-
fox) to see a color swatch.

20 enhance_caim

sigma Numeric vector of length one. Use NULL (default) to estimate it automatically as
the euclidean distance between target_color and grey in the CIE LAB color
space.

w_red Numeric vector of length one. Weight of the red channel. A single layer image
is calculated as a weighted average of the blue and red channels. This layer
is used as lightness information. The weight of the blue is the complement of
w_red.

thr Numeric vector of length one. Location parameter of the logistic membership
function. Use NULL to estimate it automatically with thr_isodata().

fuzziness Numeric vector of length one. This number is a constant value that scales mem.
Use NULL to estimate it automatically as the midpoint between the maximum
and minimum values of lightness.

gamma Numeric vector of length one. This is for applying a gamma back correction to
the lightness information (see Details and argument w_red).

Details

This is a pixel-wise methodology that evaluates the possibility for a pixel to be member of the class
Gap. High score could mean either high membership to sky_blue or, in the case of achromatic pix-
els, a high membership to values above thr. The algorithm internally uses membership_to_color()
and local_fuzzy_thresholding(). The argument sky_blue is the target_color of the former
function and its output is the argument mem of the latter function.

The argument sky_blue can be obtained from a photograph that clearly shows the sky. Then, it
can be used to process all the others photograph taken with the same equipment, configuration, and
protocol.

Via the gamma argument, gbc() can be internally used to back-correct the values passed to local_fuzzy_thresholding().

Value

An object of class SpatRaster (with same pixel dimensions than caim) that should show more con-
trast between the sky and plant pixels than any of the individual bands from caim; if not, different
parameters should be tested.

Note

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package (citation("rcaiman").

The default value of argument m is the equivalent to enter !is.na(caim$Red). See the Details
section in local_fuzzy_thresholding() to understand how this argument can modify the output.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

https://doi.org/10.1109/lgrs.2015.2425931

expand_noncircular 21

See Also

Other Pre-processing Functions: gbc(), local_fuzzy_thresholding(), membership_to_color(),
normalize()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)

r <- normalize(caim$Blue)

bin <- regional_thresholding(r, rings_segmentation(z, 30),
method = "thr_isodata")

mx <- optim_normalize(caim, bin)
mn <- min(caim[m])

sky_blue_sample <- crop_caim(caim, c(327, 239), 41, 89)
plotRGB(normalize(sky_blue_sample, mn, mx, TRUE)*255)
sky_blue <- apply(sky_blue_sample[], 2, median) %>%

normalize(., mn, mx) %>%
as.numeric() %>%
matrix(., ncol = 3) %>%
sRGB()

hex(sky_blue)
Use hex() to obtain the HEX color code. To see a color swatch, enter the
HEX code into a search engine (such as Mozilla Firefox).
NOTE: see extract_dn() for an alternative method to obtain sky_blue

as(sky_blue, "HSV") #saturatio (S) is low
To obtain same hue (H) but greater saturation
sky_blue <- HSV(239, 0.85, 0.5) %>% as(., "sRGB") %>% as(., "LAB")
hex(sky_blue)

caim <- normalize(caim, mx = mx, force_range = TRUE)
ecaim <- enhance_caim(caim, m, sky_blue = sky_blue)
plot(ecaim)
plot(caim$Blue)

to compare
plot(apply_thr(ecaim, thr_isodata(ecaim[m])))
plot(apply_thr(caim$Blue, thr_isodata(caim$Blue[m])))

End(Not run)

expand_noncircular Expand non-circular

22 expand_noncircular

Description

Expand a non-circular hemispherical photograph.

Usage

expand_noncircular(caim, z, zenith_colrow)

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

z SpatRaster built with zenith_image().

zenith_colrow Numeric vector of length two. Raster coordinates of the zenith. See calc_zenith_colrow().

Value

An object of class SpatRaster that is the result of adding margins (NA pixels) to caim. The zenith
point depicted in the picture should be in the center of the image or very close to it.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), extract_radiometry(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

Examples

Not run:

==
Non-circular Fisheye images from a Smartphone with an Auxiliary Lens
(Also applicable to Non-circular images from DSLR cameras)
==

path <- system.file("external/APC_0581.jpg", package = "rcaiman")
caim <- read_caim(path)
z <- zenith_image(2132/2, c(0.7836, 0.1512, -0.1558))
a <- azimuth_image(z)
zenith_colrow <- c(1063, 771)/2
caim <- expand_noncircular(caim, z, zenith_colrow)
plot(caim$Blue, col = seq(0,1,1/255) %>% grey())
m <- !is.na(caim$Red) & !is.na(z)
plot(m, add = TRUE, alpha = 0.3, legend = FALSE)

============================
Restricted View Canopy Photo
============================

path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)

extract_dn 23

plot(caim)
caim <- normalize(caim)
diameter <- calc_diameter(lens(), sqrt(nrow(caim)^2 + ncol(caim)^2)/2, 90)
z <- zenith_image(diameter, lens())
caim <- expand_noncircular(caim, z, c(ncol(caim)/2, nrow(caim)/2))
m <- !is.na(caim$Red)
a <- azimuth_image(z)
caim[!m] <- 0
z <- normalize(z, 0, 90) * 30.15 #60.3º diagonal FOV according to metadata
plot(caim$Blue, col = seq(0,1,1/255) %>% grey())
m <- !is.na(caim$Red) & !is.na(z)
plot(m, add = TRUE, alpha = 0.3, legend = FALSE)

End(Not run)

extract_dn Extract digital numbers

Description

Wrapper function around terra::extract().

Usage

extract_dn(r, img_points, use_window = TRUE, fun = NULL)

Arguments

r SpatRaster. A fish-eye image.
img_points The result of a call to extract_sky_points(), or an object of the same class

and structure.
use_window Logical vector of length one. If TRUE, a 3× 3 window will be used to extract the

digital number from r.
fun A function that takes a vector as input and returns a one-length numeric or

logical vector as output (e.g. mean).

Value

An object of the class data.frame. It is the argument img_points with an added column per each
layer from r. The layer names are used to name the new columns. If a function is provided as the fun
argument, the result will be summarized per column using the provided function, and the row and
col information will be omitted. Moreover, if r is an RGB image, a color will be returned instead of
a data.frame. The latter feature is useful for obtaining the sky_blue argument for enhance_caim().

Note

The point selection tool of ‘ImageJ’ software can be used to manually digitize points and create a
CSV file from which to read coordinates (see Examples). After digitizing the points on the image,
use the dropdown menu Analyze>Measure to open the Results window. To obtain the CSV file, use
File>Save As...

https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

24 extract_feature

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_feature(),
extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim()
r <- caim$Blue
bin <- apply_thr(r, thr_isodata(r[]))
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_dn(caim, sky_points)
head(sky_points)

ImageJ can be used to digitize points
path <- system.file("external/sky_points.csv",

package = "rcaiman")
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row", "col")
head(sky_points)
plot(bin)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
extract_dn(caim, sky_points, fun = median)

End(Not run)

extract_feature Extract feature

Description

Extract features from raster images.

Usage

extract_feature(
r,
segmentation,
fun = mean,
return_raster = TRUE,
ignore_label_0 = TRUE

)

extract_radiometry 25

Arguments

r SpatRaster. Single layer raster.

segmentation SpatRaster. The segmentation of r.

fun A function that takes a vector as input and returns a one-length numeric or
logical vector as output (e.g. mean).

return_raster Logical vector of length one, see details.

ignore_label_0 Logical vector of length one. If this is TRUE, the segment labeled with 0 will be
ignored.

Details

Given a single-layer raster, a segmentation, and a function, extract_features will return a nu-
meric vector or a SpatRaster depending on whether the parameter return_raster is TRUE or FALSE.
For the first case, each pixel of each segment will adopt the respective extracted feature value. For
the second case, the return will be a vector of length equal to the total number of segments. Each
value will be obtained by processing all pixels that belong to a segment with the provided function.

Value

If return_raster is set to TRUE, then an object of class SpatRaster with the same pixel dimensions
than r will be returned. Otherwise, the return is a numeric vector of length equal to the number of
segments found in segmentation.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

r <- read_caim()
z <- zenith_image(ncol(r),lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
print(extract_feature(r$Blue, g, return_raster = FALSE))
plot(extract_feature(r$Blue, g, return_raster = TRUE))

extract_radiometry Extract radiometry data

Description

Extract radiometry from images taken with the aid of a portable light source and the calibration
board detailed in calibrate_lens(). The end goal is to obtain the data required to model the
vignetting effect.

26 extract_radiometry

Usage

extract_radiometry(l, size_px = NULL)

Arguments

l List of prepossessed images (SpatRaster) for radiometry sampling. These im-
ages must comply with the equidistant projection.

size_px Numeric vector of length one. Diameter in pixels of the circular sampling area
at the image center. This area is modified considering the equidistant projection
distortion. Therefore, it will be visualized as an ellipse at any other place but the
image center.

Details

Lenses have the inconvenient property of increasingly attenuating light in the direction orthogonal
to the optical axis. This phenomenon is known as the vignetting effect and varies with lens model
and aperture setting. The method outlined here, known as the simple method, is explained in details
in Díaz et al. (2024). Next explanation might serve mostly as a quick recap of it.

The development of the simple method was done with a Kindle Paperwhite eBooks reader of 6"
with built-in light. However, an iPhone 6 plus was also tested in the early stages of development and
no substantial differences were observed. A metal bookends desk book holder was used to fasten
the eBook reader upright and a semi-transparent paper to favor a Lambertian light distribution. In
addition, the latter was used to draw on in order to guide pixel sampling. The book holder also
facilitated the alignment of the screen with the dotted lines of the printed quarter-circle.

extract_radiometry 27

As a general guideline, a wide variety of mobile devices could be used as light sources, but if
scattered data points are obtained with it, then other light sources should be tested in order to
double check that the light quality is not the reason for points scattering.

With the room only illuminated by the portable light source, nine photographs should be taken with
the light source located in the equivalent to 0, 10, 20, 30, 40, 50, 60, 70, and 80 degrees of zenith
angle, respectively. Camera configuration should be in manual mode and set with the aperture
(f/number) for which a vignetting function is required. The shutter speed should be regulated to
obtain light-source pixels with middle grey values. The nine photographs should be taken without
changing the camera configuration and the light conditions.

28 extract_radiometry

This code exemplify how to use the function to obtain the data and base R functions to obtain the
vignetting function (fv).

.read_raw <- function(path_to_raw_file) {
r <- read_caim_raw(path_to_raw_file, z, a, zenith_colrow,

radius = 500, only_blue = TRUE)
r

}

l <- Map(.read_raw, dir("raw/up/", full.names = TRUE))
up_data <- extract_radiometry(l)
l <- Map(.read_raw, dir("raw/down/", full.names = TRUE))
down_data <- extract_radiometry(l)
l <- Map(.read_raw, dir("raw/right/", full.names = TRUE))
right_data <- extract_radiometry(l)
l <- Map(.read_raw, dir("raw/left/", full.names = TRUE))

extract_radiometry 29

left_data <- extract_radiometry(l)

ds <- rbind(up_data, down_data, right_data, left_data)

plot(ds, xlim = c(0, pi/2), ylim= c(0.5,1.05),
col = c(rep(1,9),rep(2,9),rep(3,9),rep(4,9)))

legend("bottomleft", legend = c("up", "down", "right", "left"),
col = 1:4, pch = 1)

fit <- lm((1 - ds$radiometry) ~ poly(ds$theta, 3, raw = TRUE) - 1)
summary(fit)
coef <- -fit$coefficients #did you notice the minus sign?
.fv <- function(x) 1 + coef[1] * x + coef[2] * x^2 + coef[3] * x^3
curve(.fv, add = TRUE, col = 2)
coef

Once one of the aperture settings is calibrated, it can be used to calibrate all the rest. To do so,
the equipment should be used to take photographs in all desired exposition and without moving
the camera, including the aperture already calibrated and preferably under an open sky in stable
diffuse light conditions. The same procedure, which minor adaptations, is applicable to cross-
camera calibration. Below code could be used as a template.

zenith_colrow <- c(1500, 997)*2
diameter <- 947*4
z <- zenith_image(diameter, c(0.689, 0.0131, -0.0295))
a <- azimuth_image(z)

files <- dir("raw/", full.names = TRUE)
l <- list()
for (i in seq_along(files)) {
if (i == 1) {
because the first aperture was the one already calibrated
lens_coef_v <- c(0.0302, -0.320, 0.0908)

} else {
lens_coef_v <- NULL

}
l[[i]] <- read_caim_raw(files[i], z, a, zenith_colrow,

radius = 500,
only_blue = TRUE,
lens_coef_v = lens_coef_v)

}

ref <- l[[1]]
rings <- rings_segmentation(zenith_image(ncol(ref), lens()), 3)
theta <- seq(1.5, 90 - 1.5, 3) * pi/180

.fun <- function(r) {
r <- extract_feature(r, rings, return_raster = FALSE)

30 extract_rl

r/r[1]
}

l <- Map(.fun, l)

.fun <- function(x) {
x / l[[1]][] # because the first is the one already calibrated

}
radiometry <- Map(.fun, l)

l <- list()
for (i in 2:length(radiometry)) {
l[[i-1]] <- data.frame(theta = theta, radiometry = radiometry[[i]][])

}
ds <- l[[1]]
head(ds)
The result is one dataset (ds) for each file. This is all what it is needed
before using base R functions to fit a vignetting function

Value

An object from the class data.frame with columns theta (zenith angle in radians) and radiometry
(digital number (DN) or relative digital number (RDN), depending on argument z_thr.

References

Díaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), fisheye_to_equidistant(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

extract_rl Extract relative luminance

Description

Extract the luminance relative to the zenith digital number

Usage

extract_rl(r, z, a, sky_points, no_of_points = 3, z_thr = 5, use_window = TRUE)

https://doi.org/10.1016/j.agrformet.2024.110020

extract_rl 31

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

sky_points An object of class data.frame. The result of a call to extract_sky_points().
As an alternative, both ImageJ and HSP software package (Lang et al. 2013) can
be used to manually digitize points. See extract_dn() and read_manual_input()
for details.

no_of_points Numeric vector of length one. The number of near-zenith points required for the
estimation of the zenith DN.

z_thr Numeric vector on length one. The starting maximum zenith angle used to
search for near-zenith points.

use_window Logical vector of length one. If TRUE, a 3× 3 window will be used to extract the
digital number from r.

Details

The search for near-zenith points starts in the region ranged between 0 and z_thr. If the number of
near-zenith points is less than no_of_points, the region increases by steps of 2 degrees of zenith
angle till the required number of points is reached.

Value

A list of three objects, zenith_dn and max_zenith_angle from the class numeric, and sky_points
from the class data.frame; zenith_dn is the estimated zenith digital number, max_zenith_angle is
the maximum zenith angle reached in the search for near-zenith sky points, and sky_points is the
input argument sky_points with the additional columns: a, z, dn, and rl, which stand for azimuth
and zenith angle in degrees, digital number, and relative luminance, respectively. If NULL is provided
as no_of_points, then zenith_dn is forced to one and, therefore, dn and rl will be identical.

Note

The point selection tool of ‘ImageJ’ software can be used to manually digitize points and create a
CSV file from which to read coordinates (see Examples). After digitizing the points on the image,
use the dropdown menu Analyze>Measure to open the Results window. To obtain the CSV file, use
File>Save As...

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical image
from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13–27. doi:10.2478/fsmu20130008.

https://imagej.net/ij/
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://doi.org/10.2478/fsmu-2013-0008

32 extract_sky_points

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim() %>% normalize(., 0, 20847)
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
plotRGB(caim*255)

path <- system.file("external/sky_points.csv",
package = "rcaiman")

sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row", "col")
head(sky_points)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
extract_rl(caim$Blue, z, a, sky_points, 1)

End(Not run)

extract_sky_points Extract sky points

Description

Extract sky points for model fitting

Usage

extract_sky_points(r, bin, g, dist_to_plant = 3, min_raster_dist = 3)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

g SpatRaster built with sky_grid_segmentation() or chessboard().
dist_to_plant, min_raster_dist

Numeric vector of length one or NULL.

extract_sky_points 33

Details

This function will automatically sample sky pixels from the sky regions delimited by bin. The
density and distribution of the sampling points is controlled by the arguments g, dist_to_plant,
and min_raster_dist.

As the first step, sky pixels from r are evaluated to find the pixel with maximum digital value (local
maximum) per cell of the g argument. The dist_to_plant argument allows users to establish a
buffer zone for bin, meaning a size reduction of the original sky regions.

The final step is filtering these local maximum values by evaluating the Euclidean distances be-
tween them on the raster space. Any new point with a distance from existing points minor than
min_raster_dist is discarded. Cell labels determine the order in which the points are evaluated.

To skip a given filtering step, use code NULL as argument input. For instance, min_raster_dist =
NULL will return points omitting the final step.

Value

An object of the class data.frame with two columns named row and col.

See Also

fit_cie_sky_model()

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sun_coord(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim()
r <- caim$Blue
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)
bin <- regional_thresholding(r, rings_segmentation(z, 30),

method = "thr_isodata")
mx <- optim_normalize(caim, bin)
caim <- normalize(caim, 0, mx, TRUE)
plotRGB(caim*255)
sky_blue <- HSV(239, 0.85, 0.5)
ecaim <- enhance_caim(caim, m, sky_blue = sky_blue)
bin <- apply_thr(ecaim, thr_isodata(ecaim[m]))
g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g,

dist_to_plant = 3,
min_raster_dist = 10)

plot(bin)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

End(Not run)

34 extract_sun_coord

extract_sun_coord Extract sun coordinates

Description

Extract the sun coordinates for CIE sky model fitting.

Usage

extract_sun_coord(r, z, a, bin, g, max_angular_dist = 30)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

g SpatRaster built with sky_grid_segmentation() or chessboard().
max_angular_dist

Numeric vector of length one. Angle in degrees to control the potential maxi-
mum size of the solar corona.

Details

This function uses an object-based image analyze framework. The segmentation is given by g and
bin. For every cell of g, the pixels from r that are equal to one on bin are selected and its maximum
value is calculated. Then, the 95th percentile of these maximum values is computed and used to
filter out cells below that threshold; i.e, only the cells with at least one extremely bright sky pixel is
selected.

The selected cells are grouped based on adjacency, and new bigger segments are created from
these groups. The degree of membership to the class Sun is calculated for every new segment by
computing the number of cells that constitute the segment and its mean digital number (values taken
from r). In other words, the largest and brightest segments are the ones that score higher. The one
with the highest score is selected as the sun seed.

The angular distance from the sun seed to every other segments are computed, and only the seg-
ments not farther than max_angular_dist are classified as part of the sun corona. A multi-part
segment is created by merging the sun-corona segments and, finally, the center of its bounding box
is considered as the sun location.

Value

Object of class list with two numeric vectors of length two named row_col and zenith_azimuth. The
former is the raster coordinates of the solar disk (row and column), and the other is the angular
coordinates (zenith and azimuth angles in degrees).

find_sky_pixels 35

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), find_sky_pixels(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim()
r <- caim$Blue
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)
bin <- regional_thresholding(r, rings_segmentation(z, 30),

method = "thr_isodata")
mx <- optim_normalize(caim, bin)
caim <- normalize(caim, 0, mx, TRUE)
plotRGB(caim*255)
sky_blue <- HSV(239, 0.85, 0.5)
ecaim <- enhance_caim(caim, m, sky_blue = sky_blue)
bin <- apply_thr(ecaim, thr_isodata(ecaim[m]))
g <- sky_grid_segmentation(z, a, 10)
sun_coord <- extract_sun_coord(r, z, a, bin, g, max_angular_dist = 30)
points(sun_coord$row_col[2], nrow(caim) - sun_coord$row_col[1],

col = 3, pch = 10)

End(Not run)

find_sky_pixels Find sky pixels

Description

Find sky pixels automatically.

Usage

find_sky_pixels(r, z, a, sample_size_pct = 30)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().
a SpatRaster built with azimuth_image().
sample_size_pct

Numeric vector of length one. Minimum percentage of cells to sample. The
population is comprised of 1296 cells of 5× 5 degrees.

36 fisheye_to_equidistant

Details

This function assumes that:

• there is at least one pure sky pixel at the level of cells of 30× 30 degrees, and

• sky pixels have a digital number (DN) greater than canopy pixels have.

For each 30 × 30 cell, this method computes a quantile value and uses it as a threshold to select
the pure sky pixels from the given cell. As a result, a binarized image is produced in a regional
binarization fashion (regional_thresholding()). This process starts with a quantile probability
of 0.99. After producing the binarized image, this function uses a search grid with cells of 5 × 5
degrees to count how many of these cells have at least one sky pixel (pixels equal to one in the bina-
rized image). If the percentage of cells with sky pixels does not reach argument sample_size_pct,
it goes back to the binarization step but decreasing the probability by 0.01 points.

If probability reach 0.9 and the sample_size_pct criterion were not yet satisfied, the sample_size_pct
is decreased one percent and the process starts all over again.

Value

An object of class SpatRaster with values 0 and 1. This layer masks pixels that are very likely pure
sky pixels.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), masking(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim() %>% normalize(., 0, 20847)
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
r <- caim$Blue
r[is.na(r)] <- 0
bin <- find_sky_pixels(r, z, a)
plot(bin)

End(Not run)

fisheye_to_equidistant

Fisheye to equidistant

Description

Fisheye to equidistant projection (also known as polar projection).

fisheye_to_equidistant 37

Usage

fisheye_to_equidistant(
r,
z,
a,
m = NULL,
radius = NULL,
k = NULL,
p = NULL,
rmax = 100

)

Arguments

r SpatRaster. A fish-eye image.

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

m SpatRaster. A mask. For hemispherical photographs, check mask_hs().

radius Numeric integer of length one. Radius of the reprojected hemispherical image
(i.e., the output).

k Numeric vector of length one. Number of k-nearest neighbors.

p Numeric vector of length one. Power for inverse-distance weighting.

rmax Numeric vector of length one. Maximum radius where to search for knn. In-
crease this value if pixels with value 0 or FALSE appears where other values are
expected.

Details

The pixel values and their image coordinates are treated as points to be reprojected and interpolated.
To that end, this function use lidR::knnidw() as workhorse function, so arguments k, p, and rmax
are passed to it. If the user does not input values to these arguments, both k and p are automatically
defined by default as follow: when a binarized image is provided as argument r, both parameters
are set to 1; otherwise, they are set to 9 and 2, respectively.

Note

Default value for the radius argument is equivalent to input the radius of the r argument.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

38 fisheye_to_pano

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()
bin <- find_sky_pixels(r, z, a)
bin <- ootb_mblt(r, z, a, bin)$bin
bin_equi <- fisheye_to_equidistant(bin, z, a)
plot(bin)
plot(bin_equi)
Use write_bin(bin, "path/file_name") to have a file ready
to calcute LAI with CIMES, GLA, CAN-EYE, etc.

It can be used to reproject RGB photographs
plotRGB(caim)
caim <- fisheye_to_equidistant(caim, z, a)
plotRGB(caim)

End(Not run)

fisheye_to_pano Fisheye to panoramic

Description

Fisheye to panoramic (cylindrical projection)

Usage

fisheye_to_pano(r, z, a, fun = mean, angle_width = 1)

Arguments

r SpatRaster. A fish-eye image.

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

fun A function that takes a vector as input and returns a one-length numeric or
logical vector as output (e.g. mean).

angle_width Numeric vector of length one. It should be 30, 15, 10, 7.5, 6, 5, 3.75, 3, 2.5, 1.875, 1
or 0.5 degrees. This constrain is rooted in the requirement of a value able to di-
vide both the 0 to 360 and 0 to 90 ranges into a whole number of segments.

Details

An early version of this function was used in Díaz et al. (2021).

fit_cie_sky_model 39

References

Díaz GM, Negri PA, Lencinas JD (2021). “Toward making canopy hemispherical photography
independent of illumination conditions: A deep-learning-based approach.” Agricultural and Forest
Meteorology, 296, 108234. doi:10.1016/j.agrformet.2020.108234.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), lens(), test_lens_coef(), zenith_image()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
pano <- fisheye_to_pano(caim, z, a)
plotRGB(pano %>% normalize() %>% multiply_by(255))

End(Not run)

fit_cie_sky_model Fit CIE sky model

Description

Use maximum likelihood to estimate the coefficients of the CIE sky model that best fit to data
sampled from a canopy photograph.

Usage

fit_cie_sky_model(
rl,
sun_coord,
custom_sky_coef = NULL,
std_sky_no = NULL,
general_sky_type = NULL,
twilight = TRUE,
method = "BFGS"

)

Arguments

rl An object of class list. The result of a call to extract_rl() or an object with
same structure and names.

https://doi.org/10.1016/j.agrformet.2020.108234

40 fit_cie_sky_model

sun_coord An object of class list. The result of a call to extract_sun_coord() or an object
with same structure and names. See also row_col_from_zenith_azimuth() in
case you want to provide values based on date and time of acquisition and the
suncalc package.

custom_sky_coef

Numeric vector of length five or a numeric matrix with five columns. Custom
starting coefficients of the sky model. By default, they are drawn from standard
skies.

std_sky_no Numeric vector. Standard sky number from Li et al. (2016)’s Table 1.
general_sky_type

Character vector of length one. It could be any of these: "Overcast", "Clear", or
"Partly cloudy". See Table 1 from Li et al. (2016) for additional details.

twilight Logical vector of length one. If it is TRUE and the initial standard parameters
belong to the "Clear" general sky type, sun zenith angles from 90 to 96 degrees
will be tested (civic twilight). This is necessary since extract_sun_coord()
would mistakenly recognize the center of what can be seen of the solar corona
as the solar disk.

method Optimization method to use. See optim.

Details

This function is based on Lang et al. (2010). In theory, the best result would be obtained with
data showing a linear relation between digital numbers and the amount of light reaching the sensor.
See extract_radiometry() and read_caim_raw() for further details. As a compromise solution,
gbc() can be used.

The following code exemplifies how this package can be used to compare the manually-guided
fitting provided by HSP (Lang et al. 2013) against the automatic fitting provided by this package.
The code assumes that the user is working within an RStudio project located in the HSP project
folder.

r <- read_caim("manipulate/IMG_1013.pgm") %>% normalize()
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
manual_input <- read_manual_input(".", "IMG_1013")
sun_coord <- manual_inputsun_coordrow_col
sun_coord <- zenith_azimuth_from_row_col(z, sun_coord, lens())
sky_points <- manual_input$sky_points
rl <- extract_rl(r, z, a, sky_points)
model <- fit_cie_sky_model(rl, sun_coord)
cie_sky <- model$relative_luminance * model$zenith_dn
plot(r/cie_sky)

r <- read_caim("manipulate/IMG_1013.pgm")
sky_coef <- read_opt_sky_coef(".", "IMG_1013")
cie_sky_m <- cie_sky_model_raster(z, a, sun_coord$zenith_azimuth, sky_coef)
cie_sky_m <- cie_sky_manual * manual_input$zenith_dn
plot(r/cie_sky_m)

fit_cie_sky_model 41

Value

object from the class list. The result includes the following: (1) the output produced by bbmle::mle2(),
(2) the 5 coefficients, (3 and 4) observed and predicted values, (5) the digital number at the zenith,
(6) the sun coordinates –zenith and azimuth angle in degrees–, and (7) the description of the stan-
dard sky from which the initial coefficients were drawn. See Li et al. (2016) to know more about
these coefficients. If bbmle::mle2() does not converge, (1) will be NA and (2) the coefficients of a
standard sky (the one with less RMSE when more than one is tried).

Note

If you use this function in your research, please cite Lang et al. (2010) in addition to this package
(citation("rcaiman").

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13–27. doi:10.2478/fsmu20130008.

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

Li DH, Lou S, Lam JC, Wu RH (2016). “Determining solar irradiance on inclined planes from
classified CIE (International Commission on Illumination) standard skies.” Energy, 101, 462–470.
doi:10.1016/j.energy.2016.02.054.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_coneshaped_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

Manual method after Lang et al. (2010)
ImageJ can be used to digitize points
path <- system.file("external/sky_points.csv",

package = "rcaiman")
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row", "col")
head(sky_points)
plot(caim$Blue)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.1016/j.agrformet.2009.08.001
https://doi.org/10.1016/j.energy.2016.02.054

42 fit_coneshaped_model

xy <- c(210, 451) #originally captured with click() after x11()
sun_coord <- zenith_azimuth_from_row_col(z, a, c(nrow(z) - xy[2],xy[1]))
points(sun_coord$row_col[2], nrow(caim) - sun_coord$row_col[1],

col = 3, pch = 1)

rl <- extract_rl(caim$Blue, z, a, sky_points)

set.seed(7)
model <- fit_cie_sky_model(rl, sun_coord,

general_sky_type = "Clear",
twilight = FALSE,
method = "BFGS")

summary(model$mle2_output)
plot(model$obs, model$pred)
abline(0,1)
lm(model$pred~model$obs) %>% summary()

sky_cie <- cie_sky_model_raster(z, a,
modelsun_coordzenith_azimuth,
model$coef) * model$zenith_dn

plot(sky_cie)
plot(caim$Blue/sky_cie)

End(Not run)

fit_coneshaped_model Fit cone-shaped model

Description

Statistical modeling for predicting digital numbers from spherical coordinates.

Usage

fit_coneshaped_model(sky_points, use_azimuth_angle = TRUE)

Arguments

sky_points The data.frame returned by extract_rl() or a data.frame with same structure
and names.

use_azimuth_angle

Logical vector of length one. If TRUE, the Equation 4 from Díaz and Lencinas
(2018)) is used: sDN = a+ b · θ+ c · θ2 + d · sin(ϕ)+ e · cos(ϕ), where sDN
is sky digital number, a, b, c, d and e are coefficients, θ is zenith angle, and ϕ is
azimuth angle. If FALSE, the next simplified version based on Wagner (2001) is
used: sDN = a+ b · θ + c · θ2.

fit_coneshaped_model 43

Details

This method was presented in Díaz and Lencinas (2018), under the heading Estimation of the sky
DN as a previous step for our method. If you use this function in your research, please cite that
paper in addition to this package (citation("rcaiman").

Value

A list of two objects, one of class function and the other of class lm (see stats::lm()). If the
fitting fails, it returns NULL. The function requires two arguments–zenith and azimuth in degrees–to
return relative luminance.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Wagner S (2001). “Relative radiance measurements and zenith angle dependent segmentation in
hemispherical photography.” Agricultural and Forest Meteorology, 107(2), 103–115. doi:10.1016/
s01681923(00)00232x.

See Also

thr_mblt()

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()

bin <- regional_thresholding(r, rings_segmentation(z, 30), "thr_isodata")
bin <- bin & mask_hs(z, 0, 80)
sky_points <- extract_sky_points(r, bin, sky_grid_segmentation(z, a, 3))
sky_points <- extract_rl(r, z, a, sky_points, no_of_points = NULL)

model <- fit_coneshaped_model(sky_points$sky_points)
summary(model$model)
sky_cs <- model$fun(z, a)
plot(r/sky_cs)
plot(sky_cs)
plot(r/sky_cs > 0.5)

z <- zenith_image(50, lens())
a <- azimuth_image(z)

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/s0168-1923%2800%2900232-x
https://doi.org/10.1016/s0168-1923%2800%2900232-x

44 fit_trend_surface

sky_cs <- model$fun(z, a)
persp(sky_cs, theta = 90, phi = 20)

End(Not run)

fit_trend_surface Fit a trend surface to sky digital numbers

Description

Fit a trend surface using spatial::surf.ls() as workhorse function.

Usage

fit_trend_surface(r, z, a, bin, filling_source = NULL, np = 6)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

filling_source SpatRaster. An actual or reconstructed above-canopy image to complement the
sky pixels detected through the gaps of r. A photograph taken immediately
after or before taking r under the open sky with the same equipment and config-
uration is a very good option but not recommended under fleeting clouds. The
orientation relative to the North must be the same as for r. If it is set to NULL
(default), only sky pixels from r will be used as input.

np degree of polynomial surface

Details

This function is meant to be used after fit_coneshaped_model().

This method was presented in Díaz and Lencinas (2018), under the heading Estimation of the sky
DN as a previous step for our method. If you use this function in your research, please cite that
paper in addition to this package (citation("rcaiman").

Value

A list with an object of class SpatRaster and of class trls (see spatial::surf.ls()).

Note

If an incomplete above-canopy image is available as filling source, non-sky pixels should be turned
NA or they will be erroneously considered as sky pixels.

fix_reconstructed_sky 45

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

See Also

thr_mblt()

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()

bin <- regional_thresholding(r, rings_segmentation(z, 30), "thr_isodata")
bin <- bin & mask_hs(z, 0, 80)
sky_points <- extract_sky_points(r, bin, sky_grid_segmentation(z, a, 3))
sky_points <- extract_rl(r, z, a, sky_points, no_of_points = NULL)

model <- fit_coneshaped_model(sky_points$sky_points)
summary(model$model)
sky_cs <- model$fun(z, a)
plot(sky_cs)
plot(r/sky_cs)

sky_s <- fit_trend_surface(r, z, a, bin, sky_cs)$image
plot(sky_s)
plot(r/sky_s)

End(Not run)

fix_reconstructed_sky Fix reconstructed sky

Description

Automatically edit a raster image of sky digital numbers (DNs) reconstructed with functions such
as fit_coneshaped_model() and fit_trend_surface().

Usage

fix_reconstructed_sky(sky, z, r, bin)

https://doi.org/10.1139/cjfr-2018-0006

46 fix_reconstructed_sky

Arguments

sky SpatRaster. Sky DNs predicted with functions such as fit_coneshaped_model()
and fit_trend_surface().

z SpatRaster built with zenith_image().

r SpatRaster. The source of the sky DNs used to build sky (the data source).

bin SpatRaster. The binarization of r used to select the sky DNs for building the
sky argument.

Details

The predicted sky DNs are usually erroneous near the horizon because either they are a misleading
extrapolation or are based on corrupted data (non-pure sky DNs).

The proposed automatic edition consists of:

• flattening the values below the minimum value from the data source defined by r and bin and

• forcing the values toward the horizon to become gradually the median value from the data
source.

The latter is achieved by calculating the weighted average of the median value and the predicted
sky DNs, using the ratio of z to 90 to determine the weights.

Value

An object of class SpatRaster. The argument sky with dimensions unchanged but values edited.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
r <- normalize(caim$Blue)
bin <- find_sky_pixels(r, z, a)
sky <- fit_trend_surface(r, z, a, bin)$image
plot(sky)
sky <- fix_reconstructed_sky(sky, z, r, bin)
plot(sky)

End(Not run)

gbc 47

gbc Gamma back correction

Description

Gamma back correction of JPEG images

Usage

gbc(DN_from_JPEG, gamma = 2.2)

Arguments

DN_from_JPEG Numeric vector or object of the SpatRaster class. Digital numbers from a JPEG
file (0 to 255, i.e., the standard 8-bit encoded).

gamma Numeric vector of length one. Gamma value. Please see Díaz and Lencinas
(2018) for details.

Details

Digital cameras usually use sRGB as color space. It is a standard developed to ensure accurate color
and tone management. The transfer function of sRGB, known as gamma correction, is very close to
a power function with the exponent 1/2.2. This is why a DN of a born-digital photograph that was
encoded in sRGB has a non-linear relationship with luminance despite having the sensor a linear
response.

Value

The same class as DN_from_JPEG, with dimension unchanged but values rescaled between 0 and 1
in a non-linear fashion.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

See Also

Other Pre-processing Functions: enhance_caim(), local_fuzzy_thresholding(), membership_to_color(),
normalize()

Examples

path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
r <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
r
gbc(r)

https://doi.org/10.1139/cjfr-2018-0006

48 interpolate_sky_points

interpolate_sky_points

Interpolate sky points

Description

Interpolate values from canopy photographs.

Usage

interpolate_sky_points(sky_points, r, k = 3, p = 2, rmax = 200, col_id = "rl")

Arguments

sky_points An object of class data.frame. The data.frame returned by extract_rl() or
extract_dn(), or a data.frame with same basic structure and names.

r SpatRaster. The image from which sky_points was obtained.

k Numeric vector of length one. Number of k-nearest neighbors.

p Numeric vector of length one. Power for inverse-distance weighting.

rmax Numeric vector of length one. Maximum radius where to search for knn.

col_id Numeric vector of length one. ID of the column with the values to interpolate.

Details

This function use lidR::knnidw() as workhorse function, so arguments k, p, and rmax are passed
to it.

This function is based on Lang et al. (2010). In theory, the best result would be obtained with
data showing a linear relation between digital numbers and the amount of light reaching the sensor.
See extract_radiometry() and read_caim_raw() for further details. As a compromise solution,
gbc() can be used.

Default parameters are the ones used by Lang et al. (2010). The argument rmax should account
for between 15 to 20 degrees, but it is expressed in pixels units. So, image resolution and lens
projections should be taken into account to set this argument properly.

Value

An object of class SpatRaster.

References

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

https://doi.org/10.1016/j.agrformet.2009.08.001

lens 49

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), fix_reconstructed_sky(), ootb_sky_reconstruction()

Examples

Not run:
caim <- read_caim()
r <- caim$Blue %>% normalize()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)
bin <- regional_thresholding(r, rings_segmentation(z, 30),

method = "thr_isodata")
mx <- optim_normalize(caim, bin)
caim <- normalize(caim, 0, mx, TRUE)

sky_blue <- HSV(239, 0.85, 0.5)
ecaim <- enhance_caim(caim, m, sky_blue = sky_blue)
bin <- apply_thr(ecaim, thr_isodata(ecaim[m]))

g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g, dist_to_plant = 3)
plot(bin)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
sky_points <- extract_dn(r, sky_points)

sky <- interpolate_sky_points(sky_points, r, col_id = 3)
plot(sky)
plot(r/sky)

End(Not run)

lens Access the lens database

Description

Database of lens projection functions and field of views.

Usage

lens(type = "equidistant", max_fov = FALSE)

Arguments

type Character vector of length one. The name of the lens.
max_fov Logical vector of length one. Use TRUE to return the maximum field of view in

degrees.

50 lens

Details

In upward-looking leveled hemispherical photography, the zenith is the center of a circle whose
perimeter is the horizon. This is true only if the lens field of view is 180º. The relative radius is
the radius of concentric circles expressed as a fraction of the radius that belongs to the circle that
has the horizon as perimeter. The equidistant model, also called polar, is the most widely used as a
standard reference. Real lenses can approximate the projection models, but they always have some
kind of distortion. In the equidistant model, the relation between zenith angle and relative radius is
modeled with a straight line. Following Hemisfer software, this package uses a polynomial curve
to model lens distortion. A third-order polynomial is sufficient in most cases (Frazer et al. 2001).
Equations should be fitted with angles in radians.

Eventually, this will be a large database, but only the following lenses are available at the moment:

• equidistant: standard equidistant projection (Schneider et al. 2009).

• Nikkor_10.5mm: AF DX Fisheye Nikkor 10.5mm f/2.8G ED (Pekin and Macfarlane 2009)

• Nikon_FCE9: Nikon FC-E9 converter (Díaz et al. 2024)

• Olloclip: Auxiliary lens for mobile devices made by Olloclip (Díaz et al. 2024)

• Nikkor_8mm: AF–S Fisheye Nikkor 8–15mm f/3.5–4.5E ED (Díaz et al. 2024)

Value

If max_fov is set to TRUE, it returns a numeric vector of length one, which is the lens maximum field
of view in degrees. Otherwise, it returns a numeric vector with the coefficients of the lens function.

References

Díaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001). “A comparison of digital and film fisheye
photography for analysis of forest canopy structure and gap light transmission.” Agricultural and
Forest Meteorology, 109(4), 249–263. doi:10.1016/s01681923(01)00274x.

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320.
doi:10.3390/rs1041298.

Schneider D, Schwalbe E, Maas H (2009). “Validation of geometric models for fisheye lenses.” IS-
PRS Journal of Photogrammetry and Remote Sensing, 64(3), 259–266. doi:10.1016/j.isprsjprs.2009.01.001.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), fisheye_to_pano(), test_lens_coef(), zenith_image()

https://www.schleppi.ch/patrick/hemisfer/
https://doi.org/10.1016/j.agrformet.2024.110020
https://doi.org/10.1016/s0168-1923%2801%2900274-x
https://doi.org/10.3390/rs1041298
https://doi.org/10.1016/j.isprsjprs.2009.01.001

local_fuzzy_thresholding 51

Examples

lens("Nikon_FCE9")
lens("Nikon_FCE9", max_fov = TRUE)

.fp <- function(theta, lens_coef) {
x <- lens_coef[1:5]
x[is.na(x)] <- 0
for (i in 1:5) assign(letters[i], x[i])
a * theta + b * theta^2 + c * theta^3 + d * theta^4 + e * theta^5

}

theta <- seq(0, pi/2, pi/180)
plot(theta, .fp(theta, lens()), type = "l", lty = 2,

ylab = "relative radius")
lines(theta, .fp(theta, lens("Nikon_FCE9")))

local_fuzzy_thresholding

Local fuzzy thresholding

Description

This function was first presented in Díaz and Lencinas (2015). It uses a threshold value as the
location parameter of a logistic membership function whose scale parameter depends on a variable,
here named mem. This dependence can be explained as follows: if the variable is equal to 1, then the
membership function is same as a threshold function because the scale parameter is 0; lowering the
variable increases the scale parameter, thus blurring the threshold because it decreases the steepness
of the curve. Since the variable is defined pixel by pixel, this should be considered as a local fuzzy
thresholding method.

Usage

local_fuzzy_thresholding(lightness, m, mem, thr = NULL, fuzziness = NULL)

Arguments

lightness SpatRaster. A normalized greyscale image (see normalize()).

m SpatRaster. A mask. For hemispherical photographs, check mask_hs().

mem SpatRaster. It is the scale parameter of the logistic membership function. Typi-
cally it is obtained with membership_to_color().

thr Numeric vector of length one. Location parameter of the logistic membership
function. Use NULL to estimate it automatically with thr_isodata().

fuzziness Numeric vector of length one. This number is a constant value that scales mem.
Use NULL to estimate it automatically as the midpoint between the maximum
and minimum values of lightness.

52 local_fuzzy_thresholding

Details

Argument m can be used to affect the automatic estimation of thr and fuzziness.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package (citation("rcaiman").

Value

An object of class SpatRaster with same pixel dimensions than caim. Depending on mem, changes
could be subtle.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), membership_to_color(), normalize()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)

caim <- normalize(caim)

ImageJ can be used to digitize points
path <- system.file("external/sky_points.csv",

package = "rcaiman")
img_points <- read.csv(path)
img_points <- img_points[c("Y", "X")]
colnames(img_points) <- c("row", "col")
head(img_points)
target_color <- extract_dn(caim, img_points, fun = median)
as(target_color, "HSV")
target_color <- HSV(240, 0.85, 0.5) #to increase saturation

mem <- membership_to_color(caim, target_color)
mem_thr <- local_fuzzy_thresholding(mean(caim), m, mem$membership_to_grey)
plot(mem_thr)

End(Not run)

https://doi.org/10.1109/lgrs.2015.2425931

masking 53

masking Image masking

Description

Image masking

Usage

masking(r, m, RGB = c(1, 0, 0))

Arguments

r SpatRaster. The image. Values should be normalized, see normalize(). Only
methods for images with one or three layers have been implemented.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs().

RGB Numeric vector of length three. RGB color code. Red is the default color.

Value

An object of class SpatRaster that essentially is r with areas where m is equal to zero painted in a
solid color. If r is a single layer image, then the layer is triplicated to allow the use of color.

See Also

mask_hs()

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
r <- read_caim()
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
m <- mask_hs(z, 20, 70) & mask_hs(a, 90, 180)

masked_caim <- masking(normalize(r), m)
plotRGB(masked_caim * 255)

masked_bin <- masking(apply_thr(r$Blue, 125), m)
plotRGB(masked_bin * 255)

End(Not run)

54 mask_hs

mask_hs Mask hemisphere

Description

Given a zenith or azimuth image and angle restrictions, this function produces a mask.

Usage

mask_hs(r, from, to)

Arguments

r SpatRaster built with zenith_image() or azimuth_image().
from, to angle in degrees, inclusive limits.

Value

An object of class SpatRaster with values 0 and 1.

See Also

masking()

Other Segmentation Functions: chessboard(), mask_sunlit_canopy(), polar_qtree(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
z <- zenith_image(1000, lens())
a <- azimuth_image(z)
m1 <- mask_hs(z, 20, 70)
plot(m1)
m2 <- mask_hs(a, 330,360)
plot(m2)
plot(m1 & m2)
plot(m1 | m2)

15 degrees at each side of 0
m1 <- mask_hs(a, 0, 15)
m2 <- mask_hs(a, 345, 360)
plot(m1 | m2)

better use this
plot(!is.na(z))
instead of this
plot(mask_hs(z, 0, 90))

End(Not run)

mask_sunlit_canopy 55

mask_sunlit_canopy Mask sunlit canopy

Description

It is a wrapper function around membership_to_color(). It was developed with images in sRGB
color space (Díaz 2023).

Usage

mask_sunlit_canopy(caim, m = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

m SpatRaster. A mask. For hemispherical photographs, check mask_hs(). Default
(NULL) is the equivalent to enter !is.na(caim$Red).

Value

An object of class SpatRaster with values 0 and 1.

References

Díaz GM (2023). “Optimizing forest canopy structure retrieval from smartphone-based hemi-
spherical photography.” Methods in Ecology and Evolution, 14(3), 875–884. doi:10.1111/2041-
210x.14059.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), polar_qtree(), qtree(), rings_segmentation(),
sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)
plotRGB(caim)
caim <- normalize(caim)
m <- mask_sunlit_canopy(caim)
plot(m)

End(Not run)

https://doi.org/10.1111/2041-210x.14059
https://doi.org/10.1111/2041-210x.14059

56 membership_to_color

membership_to_color Compute the membership to a target color

Description

This function was first presented in Díaz and Lencinas (2015). It computes the degree of member-
ship to a color using two Gaussian membership functions and the axes A and B from the CIE LAB
color space. The lightness dimension is not considered in the calculations.

Usage

membership_to_color(caim, target_color, sigma = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

target_color color.

sigma Numeric vector of length one. Use NULL (default) to estimate it automatically as
the euclidean distance between target_color and grey in the CIE LAB color
space.

Details

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package (citation("rcaiman").

Value

It returns an object from the class SpatRaster. First layer is the membership to the target color.
Second layer is the membership to grey. Both memberships are calculated with same sigma.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), local_fuzzy_thresholding(), normalize()

Examples

Not run:
caim <- read_caim() %>% normalize
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)

https://doi.org/10.1109/lgrs.2015.2425931

normalize 57

sky_blue <- HSV(239, 0.85, 0.5)
mem <- membership_to_color(caim, sky_blue)
plot(mem)

End(Not run)

normalize Normalize data

Description

Normalize numeric and raster data.

Usage

normalize(r, mn = NULL, mx = NULL, force_range = FALSE)

Arguments

r SpatRaster or numeric vector.

mn Numeric vector of length one. Minimum expected value. Default is equivalent
to enter the minimum value from r.

mx Numeric vector of length one. Maximum expected value. Default is equivalent
to enter the maximum value from r.

force_range Logical vector of length one. If it is TRUE, the range is forced to be between 0
and 1 by flattening values found below and above those limits.

Details

Normalize data laying between mn and mx to the range 0 to 1. Data greater than mx get values greater
than 1 in a proportional fashion. Conversely, data less than mn get values less than 0.This function
can be used for linear stretching of the histogram.

Value

An object from the same class as r with values from r linearly rescaled to make mn equal to zero
and mx equal to one. Therefore, if mn and mx do not match the actual minimum and maximum from
r, then the output will not cover the 0-to-1 range and may be outside that range if force_range is
set to FALSE.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), local_fuzzy_thresholding(), membership_to_color()

Examples

normalize(read_caim())

58 obia

obia Do object-based image analysis of canopy photographs

Description

Object-based image analysis targeting the canopy silhouette.

Usage

obia(r, z = NULL, a = NULL, bin, segmentation, gf_mn = 0.2, gf_mx = 0.95)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

bin SpatRaster. This should be a working binarization of r without gross errors.

segmentation SpatRaster built with polar_qtree() or qtree().

gf_mn, gf_mx Numeric vector of length one. The minimum/maximum gap fraction that a seg-
ment should comply with to be considered as one containing foliage.

Details

This method was first presented in Díaz and Lencinas (2015). This version is simpler since it relies
on a better working binarized image. The version from 2015 uses an automatic selection of samples
followed by a knn classification of segments containing foliage. This version uses de gap fraction
extracted from bin to classify foliage by defining upper and lower limits through the arguments
gf_mx and gf_mn.

This method produces a synthetic layer by computing the ratio of r to the maximum value of r
at the segment level. This process is carried out only on the pixels covered by the classes foliage
and sky. The latter is defined by bin equal to one. To avoid spurious values, the quantile 0.9 is
computed instead of the maximum. Pixels not belonging to the class foliage return as NA.

Default values of z and a allows the processing of restricted view photographs.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package (citation("rcaiman").

Value

SpatRaster.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

https://doi.org/10.1109/lgrs.2015.2425931

ootb_mblt 59

See Also

Other Binarization Functions: apply_thr(), ootb_mblt(), ootb_obia(), regional_thresholding(),
thr_isodata(), thr_mblt()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)
ecaim <- enhance_caim(caim, m)
bin <- apply_thr(ecaim, thr_isodata(ecaim[m]))
plot(bin)

seg <- polar_qtree(caim, z, a)
synth <- obia(caim$Blue, z, a, bin, seg)
plot(synth)
foliage <- !is.na(synth)
hist(synth[foliage])
synth <- terra::cover(synth, bin)
plot(synth)
hist(synth[foliage])

End(Not run)

ootb_mblt Out-of-the-box model-based local thresholding

Description

Out-of-the-box version of the model-based local thresholding (MBLT) algorithm

Usage

ootb_mblt(r, z, a, bin, w = 0.5)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

w Numeric vector of length one. Weighting parameter from Díaz and Lencinas
(2018)’s Equation 1. See thr_mblt()

60 ootb_mblt

Details

The MBLT approach proposes a linear relationship between background value and optimal thresh-
old value. This function is a hard-coded version of a MBLT pipeline. It uses statistical models for
sky reconstruction of the type able to explain smooth changes in sky brightness. Therefore, it works
best under clear skies or overcast conditions. After the reconstruction, local thresholds are linearly
predicted from sky brightness values (see thr_mblt()).

As a high-level summary, the pipeline starts with a working binarized image and ends with a refined
binarized image. It combines these main functions extract_sky_points(), fit_coneshaped_model(),
and fit_trend_surface(). The code can be easily inspected by calling ootb_mblt without paren-
thesis. Advanced users can use the code as a template.

The MBLT algorithm was first presented in Díaz and Lencinas (2018). The version presented here
differs from the original in the following main aspects:

• The original version used a global thresholding method to provide sky points to the cone-
shaped model. This one uses extract_sky_points() as a way to improve the extraction of
pure sky points from working binarized images.

• intercept and slope are automatically obtained using data from sky points and a linear
model for accuracy evaluation after Piñeiro et al. (2008). This approach handles inaccuracies
in background reconstruction (see thr_mblt() for additional details).

• This version does not use asynchronous acquisition under the open sky, as the original method
did. The cone-shaped model (fit_coneshaped_model()) run without a filling source and the
cone-shaped sky is used as filling source for trend surface fitting (fit_trend_surface()).

This function searches for black objects against a light background. When regular canopy hemi-
spherical images are provided as input, the algorithm will find dark canopy elements against a bright
sky almost everywhere in the picture and, therefore, the result will fit user expectations. However,
if a hemispherical photograph taken under the open sky is provided, this algorithm will be still
searching for black objects against a light background, so the darker portions of the sky will be
taken as objects, i.e., canopy. As a consequence, this will not fit users expectations since users will
be looking for the classes Gap and No-gap, no matter if one of those are not in the picture itself.
This kind of error could happen with photographs of open forests for the same working principle.

If you use this function in your research, please cite Díaz and Lencinas (2018) in addition to this
package (citation("rcaiman")).

Value

Object from class list containing the binarized image (named bin) and the reconstructed skies
(named sky_cs and sky_s).

Note

If NULL is provided as the w argument, the weight is calculated as the coefficient of determination
(R2) of the linear model for accuracy evaluation (Piñeiro et al. 2008).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

https://doi.org/10.1139/cjfr-2018-0006

ootb_obia 61

Piñeiro G, Perelman S, Guerschman JP, Paruelo JM (2008). “How to evaluate models: Observed
vs. predicted or predicted vs. observed?” Ecological Modelling, 216(3-4), 316–322. doi:10.1016/
j.ecolmodel.2008.05.006.

See Also

Other Binarization Functions: apply_thr(), obia(), ootb_obia(), regional_thresholding(),
thr_isodata(), thr_mblt()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()
bin <- find_sky_pixels(r, z, a)
bin <- ootb_mblt(r, z, a, bin)
plot(bin$bin)

End(Not run)

ootb_obia Out-of-the-box object-based image analysis of canopy photographs

Description

Out-of-the-box version of methods first presented in Díaz and Lencinas (2015).

Usage

ootb_obia(
caim,
z = NULL,
a = NULL,
m = NULL,
sky_blue = NULL,
w_red = 0,
gamma = 2.2

)

https://doi.org/10.1016/j.ecolmodel.2008.05.006
https://doi.org/10.1016/j.ecolmodel.2008.05.006

62 ootb_obia

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

m SpatRaster. Default (NULL) is the equivalent to enter !is.na(z) for hemispher-
ical photography, or enter !is.na(caim$Red) for restricted view photography.

sky_blue color. Is the target_color argument to be passed to membership_to_color().
Default (NULL) is the equivalent to enter sRGB(0.1, 0.4, 0.8)–the HEX color
code is #1A66CC, it can be entered into a search engine (such as Mozilla Fire-
fox) to see a color swatch.

w_red Numeric vector of length one. Weight of the red channel. A single layer image
is calculated as a weighted average of the blue and red channels. This layer
is used as lightness information. The weight of the blue is the complement of
w_red.

gamma Numeric vector of length one. This is for applying a gamma back correction to
the lightness information (see Details and argument w_red).

Details

This function is a hard-coded version of a pipeline that combines these main functions mask_sunlit_canopy(),
enhance_caim(), polar_qtree()/qtree(), and obia(). The code can be easily inspected by call-
ing ootb_obia –no parenthesis. Advanced users can use that code as a template.

Pixels from the synthetic layer returned by obia() that lay between 0 and 1 are assigned to the class
plant only if they comply with the following conditions:

• Their values are equal to 0 after defuzzify() with a sky grid segmentation of 10 degrees.

• Their values are equal to 0 after apply_thr() with a threshold computed with thr_isodata().

• They are not exclusively surrounded by sky pixels.

Use the default values of z and a to process restricted view photographs.

If you use this function in your research, please cite Díaz and Lencinas (2015) or Díaz (2023) in
addition to this package (citation("rcaiman").

Value

An object of class SpatRaster with values 0 and 1.

References

Díaz GM (2023). “Optimizing forest canopy structure retrieval from smartphone-based hemi-
spherical photography.” Methods in Ecology and Evolution, 14(3), 875–884. doi:10.1111/2041-
210x.14059.

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

https://doi.org/10.1111/2041-210x.14059
https://doi.org/10.1111/2041-210x.14059
https://doi.org/10.1109/lgrs.2015.2425931

ootb_sky_reconstruction 63

See Also

Other Binarization Functions: apply_thr(), obia(), ootb_mblt(), regional_thresholding(),
thr_isodata(), thr_mblt()

Examples

Not run:

=====================================
Hemispherical Photo from a Smartphone
=====================================

path <- system.file("external/APC_0581.jpg", package = "rcaiman")
caim <- read_caim(path) %>% normalize()
z <- zenith_image(2132/2, c(0.7836, 0.1512, -0.1558))
a <- azimuth_image(z)
zenith_colrow <- c(1063, 771)/2
caim <- expand_noncircular(caim, z, zenith_colrow) %>% normalize()
m <- !is.na(caim$Red) & !is.na(z)
caim[!m] <- 0

bin <- ootb_obia(caim, z, a)
plot(bin)

============================
Restricted View Canopy Photo
============================

path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path) %>% normalize()

bin <- ootb_obia(caim)
plot(bin)

End(Not run)

ootb_sky_reconstruction

Out-of-the-box sky reconstruction

Description

Build an above canopy image from a single below canopy image

Usage

ootb_sky_reconstruction(
r,
z,

64 ootb_sky_reconstruction

a,
m,
bin,
g = NULL,
refine_sun_coord = FALSE,
interpolate = TRUE

)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

m SpatRaster. A mask, check mask_hs().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

g SpatRaster built with sky_grid_segmentation() or chessboard().

refine_sun_coord

Logical vector of length one

interpolate Logical vector of length one. If TRUE, interpolate_sky_points() will be
used.

Details

This function is a hard-coded version of a pipeline that uses these main functions fit_cie_sky_model()
and interpolate_sky_points().

The pipeline is an automatic version of the Lang et al. (2010) method. A paper for thoroughly
presenting and testing this pipeline is under preparation.

The out-of-range index is calculated as foollow:∑N
i=1(ri/skyi)

2,

where r is the r argument, sky is the raster obtained from the fitted model with cie_sky_model_raster()
and zenith_dn, i is the index that represents the position of a given pixel on the raster grid, and N
is the total number of pixels that satisfy: ri/skyi < 0 or ri/skyi > 1.

Value

An object from the class list that includes the following: (1) the reconstructed sky (SpatRaster), (2)
the output produced by fit_cie_sky_model(), (3) an object from the class list that includes an
object from the class lm (see stats::lm()) and the RMSE, both being the result of validating (2)
with a k-fold approach and following Piñeiro et al. (2008),(4) the dist_to_plant argument used
when fit_cie_sky_model() was called, (5) the sky_points argument used when extract_rl()
was called, and (6) the out-of-range index (see details).

ootb_sky_reconstruction 65

References

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

Piñeiro G, Perelman S, Guerschman JP, Paruelo JM (2008). “How to evaluate models: Observed
vs. predicted or predicted vs. observed?” Ecological Modelling, 216(3-4), 316–322. doi:10.1016/
j.ecolmodel.2008.05.006.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), fix_reconstructed_sky(), interpolate_sky_points()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)

r <- caim$Blue

bin <- regional_thresholding(r, rings_segmentation(z, 30),
method = "thr_isodata")

g <- sky_grid_segmentation(z, a, 10)
sun_coord <- extract_sun_coord(r, z, a, bin, g)
sun_coord$zenith_azimuth

.a <- azimuth_image(z, orientation = sun_coord$zenith_azimuth[2]+90)
seg <- sectors_segmentation(.a, 180) * rings_segmentation(z, 30)
bin <- regional_thresholding(r, seg, method = "thr_isodata")
plot(bin)

mx <- optim_normalize(caim, bin)
caim <- normalize(caim, mx = mx, force_range = TRUE)
ecaim <- enhance_caim(caim, m, HSV(239, 0.85, 0.5))
bin <- apply_thr(ecaim, thr_isodata(ecaim[m]))

set.seed(7)
sky <- ootb_sky_reconstruction(r, z, a, m, bin)

sky$sky
plot(sky$sky)
sky$model_validation$rmse
plot(r/sky$sky>1.15)
plot(sky$model_validation$reg$model$x, sky$model_validation$reg$model$y)
abline(0,1)

https://doi.org/10.1016/j.agrformet.2009.08.001
https://doi.org/10.1016/j.ecolmodel.2008.05.006
https://doi.org/10.1016/j.ecolmodel.2008.05.006

66 optim_normalize

plot(bin)
points(skysky_pointscol, nrow(caim) - skysky_pointsrow, col = 2, pch = 10)

masking the sunlit canopy and running again
.a <- azimuth_image(z, sky$model$sun_coord$zenith_azimuth[2])
m_fuzzy <- (normalize((abs((.a-180)))^1.8) + normalize(sqrt(90-z))) / 2
sun_theta <- sky$model$sun_coord$zenith_azimuth[1]
m_fuzzy <- normalize(m_fuzzy, 0, (90-sun_theta)/90, TRUE)

sky_cie <- cie_sky_model_raster(z, a, sky$model$sun_coord$zenith_azimuth,
sky$model$coef)

.bin <- !apply_thr(sky_cie, thr_isodata(sky_cie[m])) & bin

.caim <- read_caim()

.mx <- optim_normalize(.caim, .bin)

.caim <- normalize(.caim, mx = .mx, force_range = TRUE)

mem <- membership_to_color(.caim, HSV(239, 0.85, 0.5))
mem <- mem$membership_to_target_color
mem <- normalize(sqrt(mem*0.1), 0, 1)
m_fuzzy <- m * m_fuzzy + mem * (1 - m_fuzzy)
bin <- apply_thr(m_fuzzy*ecaim, thr_isodata(ecaim[m]))

set.seed(7)
g <- sky_grid_segmentation(z, a, 5)
sky <- ootb_sky_reconstruction(r, z, a, m, bin, g, refine_sun_coord = TRUE)

sky$sky
plot(sky$sky)
sky$model_validation$rmse
plot(r/sky$sky>1.15)
plot(sky$model_validation$reg$model$x, sky$model_validation$reg$model$y)
abline(0,1)

plot(bin)
points(skysky_pointscol, nrow(caim) - skysky_pointsrow, col = 2, pch = 10)

End(Not run)

optim_normalize Optimize a parameter of the function normalize()

Description

Wrapper function for bbmle::mle2(). Optimize the mx argument of the function normalize() by
maximizing colorfulness() and minimizing saturation.

Usage

optim_normalize(caim, bin, method = "BFGS")

percentage_of_clipped_highlights 67

Arguments

caim SpatRaster. The return of a call to read_caim() or read_caim_raw().

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely pure sky pixels.

method Optimization method to use. See optim.

Value

Numeric vector of length one. The values for using as mx argument with normalize().

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), percentage_of_clipped_highlights(), read_bin(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- !is.na(z)

mn <- quantile(caim$Blue[m], 0.01)
mx <- quantile(caim$Blue[m], 0.99)
r <- normalize(caim$Blue, mn, mx, TRUE)

bin <- find_sky_pixels(r, z, a)
mblt <- ootb_mblt(r, z, a, bin)
plot(mblt$bin)

mx <- optim_normalize(caim, mblt$bin)
ncaim <- normalize(caim, mx = mx, force_range = TRUE)
plotRGB(ncaim*255)
plotRGB(normalize(caim)*255)
percentage_of_clipped_highlights(ncaim$Blue, m)

End(Not run)

percentage_of_clipped_highlights

Percentage of clipped highlights

Description

Wrapper function for terra::freq()

68 polar_qtree

Usage

percentage_of_clipped_highlights(r, m)

Arguments

r Single-layer object from the SpatRaster.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs().

Value

Numeric vector of lenght one.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), read_bin(), read_caim(), read_caim_raw(), write_bin(),
write_caim()

Examples

r <- read_caim()$Blue
z <- zenith_image(ncol(r), lens())
m <- !is.na(z)
percentage_of_clipped_highlights(r, m)
r <- normalize(r, 0, 1000, TRUE)
percentage_of_clipped_highlights(r, m)

polar_qtree Do quad-tree segmentation in the polar space

Description

The quad-tree segmentation algorithm is a top-down process that makes recursive divisions in four
equal parts until a condition is satisfied and stops locally. The usual implementation of the quad-tree
algorithm is based on the raster structure and this is why the result are squares of different sizes.
This method implements the quad-tree segmentation in a polar space, so the segments are shaped
like windshields, though some of them will look elongated in height. The pattern is two opposite
and converging straight sides and two opposite and parallel curvy sides.

Usage

polar_qtree(r, z, a, scale_parameter = 0.2)

qtree 69

Arguments

r SpatRaster.

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().
scale_parameter

Numeric vector of length one. Quad-tree is a top-down method. This param-
eter controls the stopping condition. Therefore, it allows controlling the size
of the resulting segments. Ultimately, segments sizes will depend on both this
parameter and the heterogeneity of r.

Details

The algorithm splits segments of 30 degrees resolution into four sub-segments and calculates the
standard deviation of the pixels from r delimited by each of those segments. The splitting process
stops locally if the sum of the standard deviation of the sub-segments minus the standard deviation
of the parent segment (named delta) is less or equal than the scale_parameter. If r has more than
one layer, delta is calculated separately and delta mean is used to evaluate the stopping condition.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
seg <- polar_qtree(caim, z, a)
plot(seg)
plot(extract_feature(caim$Blue, seg))

End(Not run)

qtree Do quad-tree segmentation

Description

The quad-tree segmentation algorithm is a top-down process that makes recursive divisions in four
equal parts until a condition is satisfied and stops locally. This is the usual implementation of the
quad-tree algorithm, so it produces squared segments of different sizes. This particular implemen-
tation allows up to five sizes.

70 qtree

Usage

qtree(r, scale_parameter = 0.2)

Arguments

r SpatRaster.

scale_parameter

Numeric vector of length one. Quad-tree is a top-down method. This param-
eter controls the stopping condition. Therefore, it allows controlling the size
of the resulting segments. Ultimately, segments sizes will depend on both this
parameter and the heterogeneity of r.

Details

The algorithm starts splitting the entire image into large squared segments. Depending on the aspect
ratio, starting grids will going from 4 × 4 to 1 × 4 or 4 × 1. Then, it splits each segment into four
sub-segments and calculates the standard deviation of the pixels from r delimited by each of those
sub-segments and segment. The splitting process stops locally if delta, the sum of the standard
deviation of the sub-segments minus the standard deviation of the parent segment, is less or equal
than the scale_parameter. If r has more than one layer, delta is calculated separately and delta
mean is used to evaluate the stopping condition.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim() %>% normalize()
seg <- qtree(caim, scale_parameter = 0.05)
plot(caim$Blue)
plot(extract_feature(caim$Blue, seg))
plot(extract_feature(seg, seg, length))

End(Not run)

read_bin 71

read_bin Read binarized images

Description

Wrapper functions for terra::rast().

Usage

read_bin(path)

Arguments

path Character vector of length one. Path to a binarized image.

Value

An object from class SpatRaster.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), percentage_of_clipped_highlights(), read_caim(), read_caim_raw(),
write_bin(), write_caim()

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tempdir(), "mask.tif")
write_bin(m, my_file)
m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

read_caim Read a canopy image from a file

Description

Wrapper function for terra::rast().

72 read_caim

Usage

read_caim(path = NULL, upper_left = NULL, width = NULL, height = NULL)

Arguments

path Character vector of length one. Path to an image, including file extension. The
function will return a data example if no arguments are provided.

upper_left An integer vector of length two. The pixels coordinates of the upper left corner
of a region of interest (ROI). These coordinates should be in the raster coor-
dinates system. This system works like a spreadsheet, i.e, when going down
through the vertical axis, the row number increases (IMPORTANT: column
and row must be provided instead of row and column, as is the norm for objects
from the class data.frame and others alike)

width, height An integer vector of length one. The size of the boxy ROI whose upper left
corner is the upper_left argument.

Details

Run read_caim() to obtain an example of a hemispherical photo taken in non-diffuse light con-
ditions in a Nothofagus pumilio forest with a FC-E9 auxiliary lens attached to a Nikon Coolpix
5700.

Since this function aims to read born-digital color photographs, RGB-JPEG and RGB-TIFF are the
expected input. However, since this function is a wrapper for terra::rast(), format compatibility
is heritages from it.

Use upper_left, width, and height to read a particular region from the file. Although any image
editor can be used to obtain those parameters, this function was tested with ‘ImageJ’, so it might be
wise to use it.

TIP: For obtaining upper_left, width, and height, open the image on the Fiji distro of ImageJ,
draw a rectangular selection, and go to Edit>Selection>Specify. The same workflow may work with
other distros.

Value

An object from class SpatRaster with its layers named Red, Green, and Blue when a born-digital
color photographs is provided as input.

Note

The example image was obtained with this code:

zenith_colrow <- c(1290, 988)
z <- zenith_image(745*2, lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- read_caim_raw("DSCN4606.NEF", z, a, zenith_colrow, radius = 300)
z <- zenith_image(ncol(r), lens())
r <- correct_vignetting(r, z, c(0.0638, -0.101))
r <- c(mean(rY, rM), rG, rC)

https://imagej.net/ij/

read_caim_raw 73

r <- normalize(r, -1)
write_caim(r*2^16-2, "example.tif", 16)

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim_raw(),
write_bin(), write_caim()

Examples

path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
zenith_colrow <- c(1250, 1020)
diameter <- 745*2
caim <- read_caim(path, zenith_colrow - diameter/2, diameter, diameter)
plot(caim$Blue)

read_caim_raw Read a canopy image from a raw file

Description

Function that complements read_caim()

Usage

read_caim_raw(
path = NULL,
z = NULL,
a = NULL,
zenith_colrow = NULL,
radius = 700,
rmax = 100,
k = 1,
p = 1,
only_blue = FALSE,
offset_value = NULL

)

Arguments

path Character vector of length one.Path to a raw file, including file extension.

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

zenith_colrow Numeric vector of length two. Raster coordinates of the zenith. See calc_zenith_colrow().

74 read_caim_raw

radius Numeric integer of length one. Radius of the reprojected hemispherical image
(i.e., the output).

rmax Numeric vector of length one. Maximum radius where to search for knn. In-
crease this value if pixels with value 0 or FALSE appears where other values are
expected.

k Numeric vector of length one. Number of k-nearest neighbors.

p Numeric vector of length one. Power for inverse-distance weighting.

only_blue Logical vector of length one. If TRUE, only values from the blue or cyan wave-
length will be processed.

offset_value numeric vector. This values will replace the black_level_per_channel meta-
data obtained with rawpy.

Details

This function facilitates the integration of the rawpy Python package into the R environment via the
reticulate package. This integration allows rcaiman to access and pre-process raw data.

Here is a step-by-step guide to assist users in setting up the environment for efficient processing:

Check Python Accessibility::
To ensure that R can access a Python installation, run the following test:

reticulate::py_eval("1+1")

If R can access Python successfully, you will see 2 in the console. If not, you will receive instruc-
tions on how to install Python.

Create a Virtual Environment::
After passing the Python accessibility test, create a virtual environment using the following com-
mand:

reticulate::virtualenv_create()

Install rawpy::
Install the rawpy package within the virtual environment:

reticulate::py_install("rawpy")

For RStudio Users::
If you are an RStudio user who works with projects, you will need a .Renviron file in the root of
each project. To create a .Renviron file, follow these steps:

• Create a "New Blank File" named ".Renviron" (without an extension) in the project’s root
directory.

• Run bellow code:

read_manual_input 75

path <- file.path(reticulate::virtualenv_root(),
reticulate::virtualenv_list(), "Scripts", "python.exe")
paste("RETICULATE_PYTHON =", path)

• Copy/paste the line from the console (the string between the quotes) into the .Renviron file.
This is an example RETICULATE_PYTHON = ~/.virtualenvs/r-reticulate/Scripts/python.exe

• Do not forget to save the changes

By following these steps, users can easily set up their environment to access raw data efficiently,
but it is not the only way of doing it.

Value

An object from class SpatRaster. Single-layer raster if only_blue is equal to TRUE. Otherwise, a
raster with as many layers as there are distinct colors in the Color Filter Array. Layer names are
taken from the color description metadata.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(),
write_bin(), write_caim()

read_manual_input Read manual input

Description

Read manual input stored in an HSP project.

Usage

read_manual_input(path_to_HSP_project, img_name)

Arguments

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

Refer to the Details section of function write_sky_points().

76 read_opt_sky_coef

Value

A list of numeric vectors named weight, max_points, angle, point_radius, sun_coord, sky_points
and zenith_dn.

See Also

Other HSP Functions: read_opt_sky_coef(), row_col_from_zenith_azimuth(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

read_opt_sky_coef Read optimized sky coefficients

Description

Read optimized CIE sky coefficients stored in an HSP project.

Usage

read_opt_sky_coef(path_to_HSP_project, img_name)

Arguments

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

Refer to the Details section of function write_sky_points().

Value

Numeric vector of length five.

See Also

cie_sky_model_raster()

Other HSP Functions: read_manual_input(), row_col_from_zenith_azimuth(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

regional_thresholding 77

regional_thresholding Regional thresholding

Description

Regional thresholding of greyscale images.

Usage

regional_thresholding(
r,
segmentation,
method,
intercept = NULL,
slope = NULL,
prob = NULL

)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim() and normalize().

segmentation SpatRaster. The result of segmenting r. Arguably, the result of a call to rings_segmentation()
will be the preferred choice for fisheye images.

method Character vector of length one. See details for current options.
intercept, slope

Numeric vector of length one. These are linear function coefficients.

prob Numeric vector of length one. Probability for stats::quantile() calculation.

Details

Methods currently implemented are:

• Diaz2018: method presented in Díaz and Lencinas (2018) applied regionally. If this method is
selected, the arguments intercept, slope, and prob should be provided. It works segment-
wise extracting the digital numbers per segment and passing them to stats::quantile()
along with prob, which aggregated result is in turn passed to thr_mblt() along with intercept
and slope. Finally, this threshold image is applied to obtain a binarized image.

• Methods from autothresholdr package: this function can call methods from autothresholdr::auto_thresh().
For instance, use "IsoData" to use the algorithm by Ridler and Calvard (1978), which was
recommended by Jonckheere et al. (2005).

• Method isodata from this package: Use "thr_isodata" to use thr_isodata().

Value

An object of class SpatRaster with values 0 and 1.

78 rings_segmentation

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction
estimation of forests from digital hemispherical photography.” Agricultural and Forest Meteorol-
ogy, 132(1-2), 96–114. doi:10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630–632. doi:10.1109/tsmc.1978.4310039.

See Also

Other Binarization Functions: apply_thr(), obia(), ootb_mblt(), ootb_obia(), thr_isodata(),
thr_mblt()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1250, 1020) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
r <- gbc(caim$Blue)
r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize()
rings <- rings_segmentation(z, 15)
bin <- regional_thresholding(r, rings, "Diaz2018", -7.8, 0.95 * 0.5, 0.99)
plot(bin)
bin <- regional_thresholding(r, rings, "thr_isodata")
plot(bin)
#'
End(Not run)

rings_segmentation Do rings segmentation

Description

Segment an hemispherical view by slicing the zenith angle from zero to 90º in equals intervals.

Usage

rings_segmentation(z, angle_width, return_angle = FALSE)

Arguments

z SpatRaster built with zenith_image().

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

row_col_from_zenith_azimuth 79

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class SpatRaster with segments shaped like concentric rings.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), sectors_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(600, lens())
rings <- rings_segmentation(z, 15)
plot(rings == 1)

row_col_from_zenith_azimuth

Obtain row and col numbers from zenith and azimuth angles

Description

Obtain row and col numbers from zenith and azimuth angles

Usage

row_col_from_zenith_azimuth(z, a, za, lens_coef = NULL)

Arguments

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

za Numeric vector of length two. Zenith and azimuth angles in degrees.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

Value

Numeric vector of length two.

Note

Use the lens_coef argument to calculate coordinates below the horizon.

80 sectors_segmentation

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

Examples

z <- zenith_image(1000, lens())
a <- azimuth_image(z)
row_col_from_zenith_azimuth(z, a, c(45, 270))

sectors_segmentation Do sectors segmentation

Description

Segment a hemispherical view by slicing the azimuth angle from zero to 360º in equals intervals.

Usage

sectors_segmentation(a, angle_width, return_angle = FALSE)

Arguments

a SpatRaster built with azimuth_image().

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class SpatRaster with segments shaped like pizza slices.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), rings_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(600, lens())
a <- azimuth_image(z)
sectors <- sectors_segmentation(a, 15)
plot(sectors == 1)

sky_grid_segmentation 81

sky_grid_segmentation Do sky grid segmentation

Description

Segment the hemisphere view into segments of equal angular resolution for both zenith and azimuth
angles.

Usage

sky_grid_segmentation(z, a, angle_width, sequential = FALSE)

Arguments

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

angle_width Numeric vector of length one. It should be 30, 15, 10, 7.5, 6, 5, 3.75, 3, 2.5, 1.875, 1
or 0.5 degrees. This constrain is rooted in the requirement of a value able to di-
vide both the 0 to 360 and 0 to 90 ranges into a whole number of segments.

sequential Logical vector of length one. If it is TRUE, the segments are labeled with se-
quential numbers. By default (FALSE), labeling numbers are not sequential (see
Details).

Details

Intersecting rings with sectors makes a grid in which each cell is a portion of the hemisphere. Each
pixel of the grid is labeled with an ID that codify both ring and sector IDs. For example, a grid with
a regular interval of one degree has segment from 1001 to 360090. This numbers are calculated
with: sectorID× 1000+ ringID, where sectorID is the ID number of the sector and ringID is
the ID number of the ring.

Value

An object from the class SpatRaster with segments shaped like windshields, though some of them
will look elongated in height. The pattern is two opposite and converging straight sides and two
opposite and parallel curvy sides.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), rings_segmentation(), sectors_segmentation()

82 test_lens_coef

Examples

z <- zenith_image(600, lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 15)
plot(g == 24005)
Not run:
g <- sky_grid_segmentation(z, a, 15, sequential = TRUE)
col <- terra::unique(g) %>% nrow() %>% rainbow() %>% sample()
plot(g, col = col)

End(Not run)

test_lens_coef Test lens projection functions

Description

Test if a lens projection function will work between the 0-to-1 range.

Usage

test_lens_coef(lens_coef)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

Details

The package tolerate a number very close to 1 but not exactly 1 as long as it is greater than 1.
Therefore, when the test fails at this "Test that lens projection function does not predict values
barely below one", the best practice is to manually edit the last coefficient. For instance, changing
it from -0.0296 to -0.0295. See testthat::expect_equal() for further details.

If it fails in "Test that lens projection function works between the 0-to-1 range", collecting data
again might be necessary.

Value

Returns invisible(TRUE) and print "Test passed" if all tests pass, otherwise throws an error.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), fisheye_to_pano(), lens(), zenith_image()

thr_isodata 83

Examples

test_lens_coef(lens("Nikon_FCE9"))
test_lens_coef(2/pi)

thr_isodata Calculate a threshold with the isodata method

Description

Threshold calculated with the algorithm by Ridler and Calvard (1978), which was recommended
by Jonckheere et al. (2005).

Usage

thr_isodata(x)

Arguments

x Numeric vector or a single-column matrix or data.frame able to be coerced to
numeric.

Details

The implementation is based on the IsoData method of Auto Threshold ImageJ plugin by Gabriel
Landini, which is now available in the autothresholdr package (autothresholdr::auto_thresh()).
However, I found this implementarion more versatile since it is not restricted to an 8-bit input.

Value

Numeric vector of length one.

References

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction es-
timation of forests from digital hemispherical photography.” Agricultural and Forest Meteorology,
132(1-2), 96–114. doi:10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630–632. doi:10.1109/tsmc.1978.4310039.

See Also

Other Binarization Functions: apply_thr(), obia(), ootb_mblt(), ootb_obia(), regional_thresholding(),
thr_mblt()

https://imagej.net/plugins/auto-threshold#IsoData
https://imagej.net/plugins/auto-threshold#IsoData
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

84 thr_mblt

Examples

caim <- read_caim()
r <- gbc(caim$Blue)
thr <- thr_isodata(values(r))
bin <- apply_thr(r, thr)
plot(bin)

thr_mblt Calculate thresholds with the model-based method

Description

Transform background digital number into threshold values

Usage

thr_mblt(dn, intercept, slope)

Arguments

dn Numeric vector or SpatRaster. Digital number of the background. These values
should be normalized and, if they are extracted from a JPEG image, gamma
back corrected.

intercept, slope
Numeric vector of length one. These are linear function coefficients.

Details

This function transforms background digital numbers into threshold values by means of the Equa-
tion 1 from Díaz and Lencinas (2018), which is a linear function with the slope modified by a
weighting parameter. This simple function was found by studying canopy models, also known
as targets, which are perforated surfaces made of a rigid and dark material . These models were
backlighted with homogeneous lighting, photographed with a Nikon Coolpix 5700 set to acquire in
JPEG format, and those images were gamma back corrected with a default gamma value equal to
2.2 (see gbc()). Results shown that the optimal threshold value was linearly related with the back-
ground digital number (see Figure 1 and Figure 7 from Díaz and Lencinas (2018)). This shifted
the aim from finding the optimal threshold, following Song et al. (2014) method, to obtaining the
background DN as if the canopy was not there, as Lang et al. (2010) proposed.

Working principle:
Díaz and Lencinas (2018) observed the following linear relationship between the background
value, usually the sky digital number (SDN), and the optimal threshold value (OTV):

IV = a+ b · SDN (Equation 1a)

thr_mblt 85

OTV = a+ b · w · SDN (Equation 1b)

were IV is the initial value (Wagner 2001), which is the boundary between SDN and the mixed
pixels, i.e, the pixels that are neither Gap or Non-gap (Macfarlane 2011), a and b are the intercept
and slope coefficients, respectively, and w is a weighting parameter that takes into account that
OTV is always lower than IV. If SDN is calculated at the pixel level, a local thresholding method
can be applied by evaluating, pixel by pixel, if the below canopy digital number (CDN) is greater
than the OTV. Formally, If CDN > OTV , then assign Gap class, else assign Non-gap class.
This conclusion drawn from an image processing point of view matches with previous findings
drawn from a radiometric measurement paradigm, which are introduced next.
Cescatti (2007) posed that cameras can be used as a radiation measurement device if they are
properly calibrated. This method, denominated by the author as LinearRatio, seeks to obtain the
transmittance (T) as the ratio of below to above canopy radiation:

T = CDN/SDN (Equation 2)

were CDN is below canopy digital number (DN), i.e., the DN extracted from a canopy hemispher-
ical photograph.
The LinearRatio method uses T as a proxy for gap fraction. It requires twin cameras, one below
and the other above the canopy. In contrast, Lang et al. (2010) proposed to obtain SDN by
manually selecting pure sky pixels from canopy hemispherical photographs and reconstructing
the whole sky by subsequent modeling and interpolating—this method is often referred to as
LinearRatio single camera or LinearRatioSC.
Equation 2 can be seen as a standardization of the distance between CDN and SDN. With that in
mind, it is useful to rewrite Equation 1b as an inequality that can be evaluated to return a logical
statement that is directly translated into the desired binary classification:

CDN > a+ b · w · SDN (Equation 3)

Then, combining Equation 2 and 3, we find that Díaz and Lencinas (2018) parameters can be
applied to T:

CDN/SDN > a+ b · w · SDN/SDN (Equation 4a)

T > a+ b · w (Equation 4b)

From Equation 2 it is evident that any bias introduced by the camera optical and electronic system
will be canceled during the calculation of T as long as only one camera is involved. Therefore,
After examining Equation 4b, we can conclude that intercept 0 and slope 1 are theoretically cor-
rect.In addition, the w parameter can be used to filter out mixed pixels. The greater w, the greater
the possibility of selecting pure sky pixels.

86 thr_mblt

Value

An object of the same class and dimensions than dn.

Note

It is worth noting that Equation 1 was developed with 8-bit images, so calibration of new coefficient
should be done in the 0 to 255 domain since that is what thr_mblt() expect, although the dn
argument should be normalized. The latter, in spite of sounding counter intuitive, was a design
decision aiming to harmonize the whole package.

Nevertheless, new empirical calibration on JPEG files may be unnecessary since the values -7.8
intercept and 0.95 slope that had been observed with back-gamma corrected JPEG files produced
with the Nikon Coolpix 5700 camera are sufficiently close to the theoretical values that it sounds
reasonable to interpret them as a confirmation of the theory.

Users are encouraged to adopt raw file acquisition (read_caim_raw()).

To apply the weighting parameter (w) from Equation 1, just provide the argument slope as slope×
w.

References

Cescatti A (2007). “Indirect estimates of canopy gap fraction based on the linear conversion of
hemispherical photographs.” Agricultural and Forest Meteorology, 143(1-2), 1–12. doi:10.1016/
j.agrformet.2006.04.009.

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical pho-
tography.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

Macfarlane C (2011). “Classification method of mixed pixels does not affect canopy metrics
from digital images of forest overstorey.” Agricultural and Forest Meteorology, 151(7), 833–840.
doi:10.1016/j.agrformet.2011.01.019.

Song GM, Doley D, Yates D, Chao K, Hsieh C (2014). “Improving accuracy of canopy hemi-
spherical photography by a constant threshold value derived from an unobscured overcast sky.”
Canadian Journal of Forest Research, 44(1), 17–27. doi:10.1139/cjfr20130082.

Wagner S (2001). “Relative radiance measurements and zenith angle dependent segmentation in
hemispherical photography.” Agricultural and Forest Meteorology, 107(2), 103–115. doi:10.1016/
s01681923(00)00232x.

See Also

normalize(), gbc(), apply_thr() and regional_thresholding().

Other Binarization Functions: apply_thr(), obia(), ootb_mblt(), ootb_obia(), regional_thresholding(),
thr_isodata()

https://doi.org/10.1016/j.agrformet.2006.04.009
https://doi.org/10.1016/j.agrformet.2006.04.009
https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/j.agrformet.2009.08.001
https://doi.org/10.1016/j.agrformet.2011.01.019
https://doi.org/10.1139/cjfr-2013-0082
https://doi.org/10.1016/s0168-1923%2800%2900232-x
https://doi.org/10.1016/s0168-1923%2800%2900232-x

write_bin 87

Examples

thr_mblt(gbc(125), -7.8, 0.95 * 0.5)

write_bin Write binarized images

Description

Wrapper functions for terra::writeRaster().

Usage

write_bin(bin, path)

Arguments

bin SpatRaster.

path Character vector of length one. Path for writing the image.

Value

No return value. Called for side effects.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(),
read_caim_raw(), write_caim()

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tempdir(), "mask")
write_bin(m, my_file)
my_file <- as.filename(my_file) %>%

insert(., ext = "tif", replace = TRUE) %>%
as.character()

m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

88 write_caim

write_caim Write canopy image

Description

Wrapper function for terra::writeRaster().

Usage

write_caim(caim, path, bit_depth)

Arguments

caim SpatRaster.

path Character vector of length one. Path for writing the image.

bit_depth Numeric vector of length one.

Value

No return value. Called for side effects.

See Also

Other Tool Functions: colorfulness(), correct_vignetting(), defuzzify(), extract_dn(),
extract_feature(), extract_rl(), extract_sky_points(), extract_sun_coord(), find_sky_pixels(),
masking(), optim_normalize(), percentage_of_clipped_highlights(), read_bin(), read_caim(),
read_caim_raw(), write_bin()

Examples

Not run:
caim <- read_caim() %>% normalize(., 0, 255)
write_caim(caim * 2^8-2, file.path(tempdir(), "test_8bit"), 8)
write_caim(caim * 2^16-2, file.path(tempdir(), "test_16bit"), 16)
Note: the normalized values are scaled by multiplying by 2^bit_depth-2
to avoid storing in the maximum bin because those values will be
interpreted as NA by read_caim(), and that is undesired.

End(Not run)

write_sky_points 89

write_sky_points Write sky points

Description

Create a special file to interface with the HSP software.

Usage

write_sky_points(sky_points, path_to_HSP_project, img_name)

Arguments

sky_points An object of the class data.frame. The result of a calling to extract_sky_points().
path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

This function is part of a workflow that connects this package with the HSP software package (Lang
et al. 2013).

This function was designed to be called after extract_sky_points(). The r argument provided
to extract_sky_points() should be an image pre-processed by the HSP software. Those images
are stored as PGM files in the subfolder "manipulate" of the project folder (which will be in turn a
subfolder of the "projects" folder). Those PGM files can be read with read_caim().

The img_name argument of write_sky_points() should be the name of the file associated to the
aforementioned r argument.

The following code exemplifies how this package can be used in conjunction with the HSP software.
The code assumes that the user is working within an RStudio project located in the HSP project
folder.

r <- read_caim("manipulate/IMG_1014.pgm")
plot(r)
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
mblt <- ootb_mblt(r, z, a)$bin
bin <- mask_hs(z, 0, 85) & bin

sun_coord <- extract_sun_coord(r, z, a, bin, g)
write_sun_coord(sun_coord$row_col, ".", "IMG_1014")

sky_points <- extract_sky_points(r, bin, g)
write_sky_points(sky_points, ".", "IMG_1014")

90 write_sun_coord

Value

None. A file will be written in the HSP project folder.

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical image
from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13–27. doi:10.2478/fsmu20130008.

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sun_coord(), zenith_azimuth_from_row_col()

write_sun_coord Write sun coordinates

Description

Create a special file to interface with the HSP software.

Usage

write_sun_coord(sun_coord, path_to_HSP_project, img_name)

Arguments

sun_coord Numeric vector of length two. Raster coordinates of the solar disk that can be
obtained by calling to extract_sun_coord(). TIP: if the output of extrac_sun_coord()
is sun_coord, then you should provide here this: sun_coord$row_col. See also
row_col_from_zenith_azimuth() in case you want to provide values based on
date and time of acquisition and the suncalc package.

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

Refer to the Details section of function write_sky_points().

Value

None. A file will be written in the HSP project folder.

https://doi.org/10.2478/fsmu-2013-0008

zenith_azimuth_from_row_col 91

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sky_points(), zenith_azimuth_from_row_col()

zenith_azimuth_from_row_col

Obtain zenith and azimuth angles from row and col numbers

Description

Obtain zenith and azimuth angles from row and col numbers

Usage

zenith_azimuth_from_row_col(z, a, row_col, lens_coef = NULL)

Arguments

z SpatRaster built with zenith_image().

a SpatRaster built with azimuth_image().

row_col Numeric vector of length two. Row and col numbers.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

Value

Numeric vector of length two.

Note

Use the lens_coef argument to calculate coordinates below the horizon.

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sky_points(), write_sun_coord()

Examples

z <- zenith_image(1000, lens())
a <- azimuth_image(z)
zenith_azimuth_from_row_col(z, a, c(501, 750))

92 zenith_image

zenith_image Build Zenith image

Description

Build a single layer-image with zenith angle values, assuming upwards-looking hemispherical pho-
tography with the optical axis vertically aligned.

Usage

zenith_image(diameter, lens_coef)

Arguments

diameter Numeric vector of length one. Diameter in pixels expressed as an even integer.
The latter is to simplify calculations by having the zenith point located between
pixels. Snapping the zenith point between pixels does not affect accuracy be-
cause half-pixel is less than the uncertainty in localizing the circle within the
picture.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function. See
calibrate_lens().

Value

An object of class SpatRaster of zenith angles in degrees, showing a complete hemispherical view
with the zenith on the center.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_relative_radius(), calc_zenith_colrow(),
calibrate_lens(), crosscalibrate_lens(), expand_noncircular(), extract_radiometry(),
fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef()

Examples

z <- zenith_image(600, lens("Nikon_FCE9"))
plot(z)

Index

∗ Binarization Functions
apply_thr, 3
obia, 58
ootb_mblt, 59
ootb_obia, 61
regional_thresholding, 77
thr_isodata, 83
thr_mblt, 84

∗ HSP Functions
read_manual_input, 75
read_opt_sky_coef, 76
row_col_from_zenith_azimuth, 79
write_sky_points, 89
write_sun_coord, 90
zenith_azimuth_from_row_col, 91

∗ Lens Functions
azimuth_image, 4
calc_diameter, 6
calc_relative_radius, 7
calc_zenith_colrow, 8
calibrate_lens, 9
crosscalibrate_lens, 16
expand_noncircular, 21
extract_radiometry, 25
fisheye_to_equidistant, 36
fisheye_to_pano, 38
lens, 49
test_lens_coef, 82
zenith_image, 92

∗ Metrics Functions
calc_co, 5

∗ Pre-processing Functions
enhance_caim, 19
gbc, 47
local_fuzzy_thresholding, 51
membership_to_color, 56
normalize, 57

∗ Segmentation Functions
chessboard, 12

mask_hs, 54
mask_sunlit_canopy, 55
polar_qtree, 68
qtree, 69
rings_segmentation, 78
sectors_segmentation, 80
sky_grid_segmentation, 81

∗ Sky Reconstruction Functions
cie_sky_model_raster, 13
fit_cie_sky_model, 39
fit_coneshaped_model, 42
fit_trend_surface, 44
fix_reconstructed_sky, 45
interpolate_sky_points, 48
ootb_sky_reconstruction, 63

∗ Tool Functions
colorfulness, 14
correct_vignetting, 15
defuzzify, 18
extract_dn, 23
extract_feature, 24
extract_rl, 30
extract_sky_points, 32
extract_sun_coord, 34
find_sky_pixels, 35
masking, 53
optim_normalize, 66
percentage_of_clipped_highlights,

67
read_bin, 71
read_caim, 71
read_caim_raw, 73
write_bin, 87
write_caim, 88

apply_thr, 3, 59, 61, 63, 78, 83, 86
apply_thr(), 62, 86
autothresholdr::auto_thresh(), 77, 83
azimuth_image, 4, 7–9, 11, 17, 22, 30, 37, 39,

50, 82, 92

93

94 INDEX

azimuth_image(), 5, 13, 31, 34, 35, 37, 38,
44, 54, 58, 59, 62, 64, 69, 73, 79–81,
91

bbmle::mle2(), 41, 66

calc_co, 5
calc_diameter, 4, 6, 8, 9, 11, 17, 22, 30, 37,

39, 50, 82, 92
calc_relative_radius, 4, 7, 7, 9, 11, 17, 22,

30, 37, 39, 50, 82, 92
calc_zenith_colrow, 4, 7, 8, 8, 11, 17, 22,

30, 37, 39, 50, 82, 92
calc_zenith_colrow(), 17, 22, 73
calibrate_lens, 4, 7–9, 9, 17, 22, 30, 37, 39,

50, 82, 92
calibrate_lens(), 6, 7, 17, 25, 79, 82, 91, 92
chessboard, 12, 54, 55, 69, 70, 79–81
chessboard(), 32, 34, 64
cie_sky_model_raster, 13, 41, 43, 45, 46,

49, 65
cie_sky_model_raster(), 64, 76
color, 19, 23, 56, 62
colorfulness, 14, 15, 18, 24, 25, 32, 33, 35,

36, 53, 67, 68, 71, 73, 75, 87, 88
colorfulness(), 66
correct_vignetting, 14, 15, 18, 24, 25, 32,

33, 35, 36, 53, 67, 68, 71, 73, 75, 87,
88

crop_caim, 16
crosscalibrate_lens, 4, 7–9, 11, 16, 22, 30,

37, 39, 50, 82, 92

defuzzify, 14, 15, 18, 24, 25, 32, 33, 35, 36,
53, 67, 68, 71, 73, 75, 87, 88

defuzzify(), 62

enhance_caim, 19, 47, 52, 56, 57
enhance_caim(), 23, 62
expand_noncircular, 4, 7–9, 11, 17, 21, 30,

37, 39, 50, 82, 92
extract_dn, 14, 15, 18, 23, 25, 32, 33, 35, 36,

53, 67, 68, 71, 73, 75, 87, 88
extract_dn(), 31, 48
extract_feature, 14, 15, 18, 24, 24, 32, 33,

35, 36, 53, 67, 68, 71, 73, 75, 87, 88
extract_radiometry, 4, 7–9, 11, 17, 22, 25,

37, 39, 50, 82, 92
extract_radiometry(), 15, 40, 48

extract_rl, 14, 15, 18, 24, 25, 30, 33, 35, 36,
53, 67, 68, 71, 73, 75, 87, 88

extract_rl(), 39, 42, 48, 64
extract_sky_points, 14, 15, 18, 24, 25, 32,

32, 35, 36, 53, 67, 68, 71, 73, 75, 87,
88

extract_sky_points(), 23, 31, 60, 89
extract_sun_coord, 14, 15, 18, 24, 25, 32,

33, 34, 36, 53, 67, 68, 71, 73, 75, 87,
88

extract_sun_coord(), 40, 90

find_sky_pixels, 14, 15, 18, 24, 25, 32, 33,
35, 35, 53, 67, 68, 71, 73, 75, 87, 88

fisheye_to_equidistant, 4, 7–9, 11, 17, 22,
30, 36, 39, 50, 82, 92

fisheye_to_pano, 4, 7–9, 11, 17, 22, 30, 37,
38, 50, 82, 92

fit_cie_sky_model, 13, 39, 43, 45, 46, 49, 65
fit_cie_sky_model(), 33, 64
fit_coneshaped_model, 13, 41, 42, 45, 46,

49, 65
fit_coneshaped_model(), 44–46, 60
fit_trend_surface, 13, 41, 43, 44, 46, 49, 65
fit_trend_surface(), 45, 46, 60
fix_reconstructed_sky, 13, 41, 43, 45, 45,

49, 65

gbc, 21, 47, 52, 56, 57
gbc(), 20, 40, 48, 84, 86

interpolate_sky_points, 13, 41, 43, 45, 46,
48, 65

interpolate_sky_points(), 64

lens, 4, 7–9, 11, 17, 22, 30, 37, 39, 49, 82, 92
lidR::knnidw(), 37, 48
local_fuzzy_thresholding, 21, 47, 51, 56,

57
local_fuzzy_thresholding(), 20

mask_hs, 12, 54, 55, 69, 70, 79–81
mask_hs(), 5, 14, 19, 37, 51, 53, 55, 64, 68
mask_sunlit_canopy, 12, 54, 55, 69, 70,

79–81
mask_sunlit_canopy(), 62
masking, 14, 15, 18, 24, 25, 32, 33, 35, 36, 53,

67, 68, 71, 73, 75, 87, 88
masking(), 54

INDEX 95

membership_to_color, 21, 47, 52, 56, 57
membership_to_color(), 19, 20, 51, 55, 62

normalize, 21, 47, 52, 56, 57
normalize(), 31, 32, 34, 35, 44, 51, 53, 58,

59, 64, 66, 67, 77, 86

obia, 3, 58, 61, 63, 78, 83, 86
obia(), 62
ootb_mblt, 3, 59, 59, 63, 78, 83, 86
ootb_obia, 3, 59, 61, 61, 78, 83, 86
ootb_sky_reconstruction, 13, 41, 43, 45,

46, 49, 63
optim, 40, 67
optim_normalize, 14, 15, 18, 24, 25, 32, 33,

35, 36, 53, 66, 68, 71, 73, 75, 87, 88

percentage_of_clipped_highlights, 14,
15, 18, 24, 25, 32, 33, 35, 36, 53, 67,
67, 71, 73, 75, 87, 88

polar_qtree, 12, 54, 55, 68, 70, 79–81
polar_qtree(), 58, 62

qtree, 12, 54, 55, 69, 69, 79–81
qtree(), 58, 62

read_bin, 14, 15, 18, 24, 25, 32, 33, 35, 36,
53, 67, 68, 71, 73, 75, 87, 88

read_caim, 14, 15, 18, 24, 25, 32, 33, 35, 36,
53, 67, 68, 71, 71, 75, 87, 88

read_caim(), 14, 16, 19, 22, 31, 32, 34, 35,
44, 55, 56, 58, 59, 62, 64, 67, 73, 77,
89

read_caim_raw, 14, 15, 18, 24, 25, 32, 33, 35,
36, 53, 67, 68, 71, 73, 73, 87, 88

read_caim_raw(), 14, 16, 19, 22, 40, 48, 55,
56, 62, 67, 86

read_manual_input, 75, 76, 80, 90, 91
read_manual_input(), 31
read_opt_sky_coef, 76, 76, 80, 90, 91
regional_thresholding, 3, 59, 61, 63, 77,

83, 86
regional_thresholding(), 36, 86
rings_segmentation, 12, 54, 55, 69, 70, 78,

80, 81
rings_segmentation(), 77
row_col_from_zenith_azimuth, 76, 79, 90,

91
row_col_from_zenith_azimuth(), 40, 90

sectors_segmentation, 12, 54, 55, 69, 70,
79, 80, 81

sky_grid_segmentation, 12, 54, 55, 69, 70,
79, 80, 81

sky_grid_segmentation(), 18, 32, 34, 64
spatial::surf.ls(), 44
SpatRaster, 3–5, 12–16, 18–20, 22, 23, 25,

26, 31, 32, 34–38, 44, 46–48, 51–59,
62, 64, 67–73, 75, 77–81, 84, 87, 88,
91, 92

stats::lm(), 11, 17, 43, 64
stats::quantile(), 77

terra::extract(), 23
terra::freq(), 67
terra::rast(), 71, 72
terra::writeRaster(), 87, 88
test_lens_coef, 4, 7–9, 11, 17, 22, 30, 37,

39, 50, 82, 92
test_lens_coef(), 11
testthat::expect_equal(), 82
thr_isodata, 3, 59, 61, 63, 78, 83, 86
thr_isodata(), 20, 51, 62, 77
thr_mblt, 3, 59, 61, 63, 78, 83, 84
thr_mblt(), 43, 45, 59, 60, 77, 86

write_bin, 14, 15, 18, 24, 25, 32, 33, 35, 36,
53, 67, 68, 71, 73, 75, 87, 88

write_caim, 14, 15, 18, 24, 25, 32, 33, 35, 36,
53, 67, 68, 71, 73, 75, 87, 88

write_sky_points, 76, 80, 89, 91
write_sky_points(), 75, 76, 90
write_sun_coord, 76, 80, 90, 90, 91

zenith_azimuth_from_row_col, 76, 80, 90,
91, 91

zenith_image, 4, 7–9, 11, 17, 22, 30, 37, 39,
50, 82, 92

zenith_image(), 4, 5, 7, 13, 15, 22, 31, 34,
35, 37, 38, 44, 46, 54, 58, 59, 62, 64,
69, 73, 78, 79, 81, 91

	apply_thr
	azimuth_image
	calc_co
	calc_diameter
	calc_relative_radius
	calc_zenith_colrow
	calibrate_lens
	chessboard
	cie_sky_model_raster
	colorfulness
	correct_vignetting
	crop_caim
	crosscalibrate_lens
	defuzzify
	enhance_caim
	expand_noncircular
	extract_dn
	extract_feature
	extract_radiometry
	extract_rl
	extract_sky_points
	extract_sun_coord
	find_sky_pixels
	fisheye_to_equidistant
	fisheye_to_pano
	fit_cie_sky_model
	fit_coneshaped_model
	fit_trend_surface
	fix_reconstructed_sky
	gbc
	interpolate_sky_points
	lens
	local_fuzzy_thresholding
	masking
	mask_hs
	mask_sunlit_canopy
	membership_to_color
	normalize
	obia
	ootb_mblt
	ootb_obia
	ootb_sky_reconstruction
	optim_normalize
	percentage_of_clipped_highlights
	polar_qtree
	qtree
	read_bin
	read_caim
	read_caim_raw
	read_manual_input
	read_opt_sky_coef
	regional_thresholding
	rings_segmentation
	row_col_from_zenith_azimuth
	sectors_segmentation
	sky_grid_segmentation
	test_lens_coef
	thr_isodata
	thr_mblt
	write_bin
	write_caim
	write_sky_points
	write_sun_coord
	zenith_azimuth_from_row_col
	zenith_image
	Index

